首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As the key part of chip-scale atomic clocks(CSACs), the vapor cell directly determines the volume, stability,and power consumption of the CSAC. The reduction of the power consumption and CSAC volumes demands the manufacture of corresponding vapor cells. This overview presents the research development of vapor cells of the past few years and analyzes the shortages of the current preparation technology. By comparing several different vapor cell preparation methods, we successfully realized the micro-fabrication of vapor cells using anodic bonding and deep silicon etching. This cell fabrication method is simple and effective in avoiding weak bonding strengths caused by alkali metal volatilization during anodic bonding under high temperatures.Finally, the vapor cell D2 line was characterized via optical-absorption resonance. According to the results,the proposed method is suitable for CSAC.  相似文献   

2.
Research on chip-scale atomic clocks (CSACs) based on coherent population trapping (CPT) is reviewed. The back- ground and the inspiration for the research are described, including the important schemes proposed to improve the CPT signal quality, the selection of atoms and buffer gases, and the development of micro-cell fabrication. With regard to the re- liability, stability, and service life of the CSACs, the research regarding the sensitivity of the CPT resonance to temperature and laser power changes is also reviewed, as well as the CPT resonance's collision and light of frequency shifts. The first generation CSACs have already been developed but its characters are still far from our expectations. Our conclusion is that miniaturization and power reduction are the most important aspects calling for further research.  相似文献   

3.
4.
We describe the microfabrication of 85 Rb vapour cells using a glass-silicon anodic bonding technique and in situ chemical reaction between rubidium chloride and barium azide to produce Rb.Under controlled conditions,the pure metallic Rb drops and buffer gases were obtained in the cells with a few mm 3 internal volumes during the cell sealing process.At an ambient temperature of 90 C the optical absorption resonance of 85 Rb D1 transition with proper broadening and the corresponding coherent population trapping (CPT) resonance,with a signal contrast of 1.5% and linewidth of about 1.7 kHz,have been detected.The sealing quality and the stability of the cells have also been demonstrated experimentally by using the helium leaking detection and the after-9-month optoelectronics measurement which shows a similar CPT signal as its original status.In addition,the physics package of chip-scale atomic clock (CSAC) based on the cell was realized.The measured frequency stability of the physics package can reach to 2.1×10 10 at one second when the cell was heated to 100 C which proved that the cell has the quality to be used in portable and battery-operated devices.  相似文献   

5.
We describe a novel technique for stabilizing frequency shifts in laser-interrogated vapor-cell atomic clocks. The method suppresses frequency shifts due to changes in the laser frequency, intensity, and modulation index as well as atomic vapor density. The clock operating parameters are monitored by using the atoms themselves, rather than by using conventional schemes for laser frequency and cell temperature control. The experiment is realized using a chip-scale atomic clock. The novel atomic-based stabilization approach results in a simpler setup and improved long-term performance.  相似文献   

6.
We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15 K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.  相似文献   

7.
Distributed-feedback laser diodes emitting at 780?nm have been evaluated, with respect to the aging of the injection current required for reaching the rubidium D2 resonance line. Results obtained for lasers operating in air and in vacuum for 9 months are reported. When operated at constant temperature, the laser current required for emission at the wavelength of the desired atomic resonance is found to decrease by 50 to 80?μA per month. The impact of this result on the lifetime and long-term performances of laser-pumped rubidium atomic clocks is discussed.  相似文献   

8.
芯片级原子钟主要包括射频模块、物理封装模块以及其他的外围控制模块。射频模块的设计关系到芯片级原子钟的短期稳定度,所以射频模块在芯片级原子钟的设计时是非常重要的一部分。本文利用数字锁相环技术实现频率为4.596 GHz的射频源,射频源由三部分组成,包括小数分频频率综合器、压控振荡器和环路滤波器。数字锁相环具有相位噪声低,频谱稳定度高等特点。此外,由于小数分频频率综合器是可编程的,可以通过配置N分频器与R分频器实现输出频率的快速扫描。与此同时,根据相关公式,可以计算出三阶无源环路滤波器的近似参数值,所设计的环路滤波器具有300 kHz的环路带宽以及55的相位裕度。最后,整个基于数字锁相环技术实现的射频源通过仿真、硬件实现以及测试。测试结果显示,射频源的相位噪声为-74.02 dBc/Hz@300 Hz,符合芯片级原子钟射频源的设计要求。  相似文献   

9.
芯片级原子钟主要包括射频模块、物理封装模块以及其他的外围控制模块。射频模块的设计关系到芯片级原子钟的短期稳定度,所以射频模块在芯片级原子钟的设计时是非常重要的一部分。本文利用数字锁相环技术实现频率为4.596 GHz的射频源,射频源由三部分组成,包括小数分频频率综合器、压控振荡器和环路滤波器。数字锁相环具有相位噪声低,频谱稳定度高等特点。此外,由于小数分频频率综合器是可编程的,可以通过配置N分频器与R分频器实现输出频率的快速扫描。与此同时,根据相关公式,可以计算出三阶无源环路滤波器的近似参数值,所设计的环路滤波器具有300 kHz的环路带宽以及55的相位裕度。最后,整个基于数字锁相环技术实现的射频源通过仿真、硬件实现以及测试。测试结果显示,射频源的相位噪声为-74.02 dBc/Hz@300 Hz,符合芯片级原子钟射频源的设计要求。  相似文献   

10.
We experimentally demonstrate a communication protocol that enables frequency conversion and routing of quantum information in an adiabatic and thus robust way. The protocol is based on electromagnetically induced transparency (EIT) in systems with multiple excited levels: transfer and/or distribution of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line.  相似文献   

11.
We investigate the hyperfine transition of magnetically trapped non-condensed atoms. The two principal frequency shifts, the second order Zeeman effect and the mean field interaction are considered. Analytic models of the mean frequency and its trap induced spread are developed. Comparisons with existing experiments evaluate the role of the atoms’ oscillatory motion. The analytic model proves to be equivalent to existing Monte Carlo simulations. The formulae provide a simple tool for optimising the design of a new experiment. Applied to the two-photon transition |F=1,m F =−1〉→|F=2,m F =1〉 in 87Rb and the conditions of a typical atom chip experiment, a line spread as small as 11 mHz is predicted giving a quality factor of 1012. The system is promising for application in precision instruments such as compact atomic clocks.  相似文献   

12.
13.
贺凌翔 《物理》2023,52(7):476-481
近年来,伴随着原子钟研制精度的不断提高,尤其是基于中性原子的光晶格钟,其稳定度已经推进到10-19量级,不确定度也已达到小系数10-18量级,原子光钟在精密测量领域的应用也被推上了一个新高度。除了被广泛谈及的用于测量精细结构常数的变化、测量引力波以及寻找暗物质,高精度的原子光钟被认为是一个可用于大地测量以及爱因斯坦广义相对论验证的强有力的工具。文章主要从原子光晶格钟测量引力红移的角度出发,介绍原子光晶格钟在测地学方面的应用。最后,引入高精度原子光晶格钟用于系统熵的测量,这可能成为未来精密测量的一个新领域。  相似文献   

14.
An atomic magnetometer based on coherent population trapping(CPT) resonances in microfabricated vapor cells is demonstrated. Fabricated by the micro-electro-mechanical-system(MEMS) technology, the cells are filled with Rb and Ne at a controlled pressure. An experimental apparatus is built for characterizing properties of microfabricated vapor cells via the CPT effects. The typical CPT linewidth is measured to be about 3 k Hz(1.46 k Hz with approximately zero laser intensity) for the rubidium D1 line at about 90℃. The effects of pressure, temperature and laser intensity on CPT linewidth are studied experimentally. A closed-loop atomic magnetometer is finally finished with a sensitivity of 210.5 p T/Hz1/2 at 1 Hz bandwidth. This work paves the way for developing an integrated chip-scale atomic magnetometer in the future.  相似文献   

15.
<正>A robust external cavity diode laser(ECDL) insensitive to mechanical vibration is built with an interference filter for selecting wavelength and a cat-eye reflector for light feedback.The free-running laser has a linewidth of 72 kHz.The laser frequency stability reaches 3×10~(-12) at 1-s integration time in terms of relative Allan variance based on the saturation absorption spectrum.  相似文献   

16.
A new framework is proposed to compare and unify photon and atomoptics, which rests on the quantization of proper time. A common waveequation written in five dimensions reduces both cases to 5D-optics ofmassless particles. The ordinary methods of optics (eikonal equation, Kirchhoff integral, Lagrange invariant, Fermat principle, symplectic algebraand ABCD matrices,...) are used to solve this equation in practical cases.The various phase shift cancellations, which occur in atom interferometers, and the quantum Langevin twin paradox for atoms, are then easily explained.A general phase-shift formula for interferometers is derived in fivedimensions, which applies to clocks as well as to gravito-inertial sensors.The application of this formula is illustrated in the case of atomicfountain clocks.  相似文献   

17.
Cesium containing glass with solid metal electrodes was used as a Cs atom source in a high vacuum system. A silver anode provides an injection source of highly mobile ions which sweep Cs to the cathode surface, from which they evaporate into the vacuum. Cathode metallization with finger patterns was used leaving bare glass for Cs evaporation. Laser absorption measurements show Cs vapor generation synchronous with an applied DC voltage.  相似文献   

18.
Search for variations of fundamental constants using atomic fountain clocks   总被引:1,自引:0,他引:1  
Over five years, we have compared the hyperfine frequencies of 133Cs and 87Rb atoms in their electronic ground state using several laser-cooled 133Cs and 87Rb atomic fountains with an accuracy of approximately 10(-15). These measurements set a stringent upper bound to a possible fractional time variation of the ratio between the two frequencies: d/dt ln([(nu(Rb))/(nu(Cs))]=(0.2+/-7.0)x 10(-16) yr(-1) (1sigma uncertainty). The same limit applies to a possible variation of the quantity (mu(Rb)/mu(Cs))alpha(-0.44), which involves the ratio of nuclear magnetic moments and the fine structure constant.  相似文献   

19.
A method that obtains the Ramsey-coherent population trapping(CPT) spectrum with the Faraday effect is investigated.An experiment is implemented to detect the light polarization components generated from the Faraday effect.The experimental results agree with the theoretical calculations based on the Liouville equation.By comparing with the method without using the Faraday effect,the potential of this method for a CPT-based atomic clock is assessed.The results indicate that this method should improve the short-term frequency stability by several times.  相似文献   

20.
We demonstrate a Doppler-free spectroscopic method that we test on 87Rb and 85Rb vapor. By using a magnetic field to induce a dichroism on the sample, we generate a dispersive signal with low background, which allows us to lock a diode laser even on small spectroscopic features. We elaborate the advantages of this simple and easy method by comparing it to other methods. Received 15 October 2002 Published online 17 December 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号