首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet irradiation, which is environment friendly and without any chemical pollution, was used to functionalize high‐density polyethylene (HDPE) and to improve the interfacial interaction of its composites with sericite in this study. The oxygen‐containing groups of C?O, C‐O, and C(?O)O were quickly introduced onto molecular chains of HDPE by ultraviolet irradiation in ozone atmosphere and the contents of the introduced oxygen‐containing groups increased with increasing the modification time. It is important to note that the irradiation time greatly decreased compared to that in air or oxygen atmosphere. After modification, the molecular weight of the irradiated HDPE decreased and its distribution became wider. The irradiated HDPE in ozone was not crosslinked, which is an advantage over the same reaction in air or oxygen atmosphere. With increasing the irradiation time, the melting temperature of the irradiated HDPE lightly decreased, while its crystallinity, hydrophilicity, and fluidity increased. The composites of HDPE/sericite were prepared. The results showed that the dispersion of sericite in the matrix and the interfacial interaction of sericite with the matrix were markedly improved for the irradiated HDPE/sericite composites. As a result, the irradiated HDPE/sericite composites showed significantly increased tensile yield strength and notched impact strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Some oxygen‐containing groups such as C?O and C–O were introduced onto high‐density polyethylene (HDPE) chains by an ultraviolet irradiation technique without the addition of any additives, and this method causes no chemical pollution to the environment. This groups content increases with irradiation time. Gelation took place in the HDPE irradiated for 16?hr, and the gel content also increases with irradiation time. After irradiation, the crystal shape and crystalline plane spacing of HDPE remained unchanged; the melting temperature decreased, whereas the crystallinity and hydrophilicity increased. Due to the introduction of polar groups, the interfacial interaction between sericite–tridymite–cristobalite (STC) particles and irradiated HDPE, and the mechanical properties of irradiated HDPE/STC (60/40) blend were improved. Compared with the yield and impact strength of HDPE/STC (60/40) blend, those of the corresponding blend irradiated for 16?hr were increased from 25.1?MPa and 56?J/m to 29.1?MPa and 283?J/m, respectively.  相似文献   

3.
The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
制备了一系列具有不同界面状态的聚丙烯 (PP) 硫酸钡 (BaSO4)复合体 .PP BaSO4的界面分别用硅烷、硬脂酸、马来酸酐接枝聚丙烯 (PP g MAH)改性 .研究表明 ,填充体系的熔体粘度和熔体弹性均高于基体 .以硅烷和PP g MAH进行界面改性后 ,PP BaSO4的界面相互作用加强 ,导致复合体系中的熔体粘度和熔体弹性进一步提高 ,同时BaSO4对PP的成核活性提高 .填料用硬脂酸处理后 ,硬脂酸能够在填料粒子表面上形成一个包覆层 ,使粒子与PP的亲和性改善 .同时该包覆层具有润滑作用 ,使得复合体系的熔体粘度和熔体弹性下降 ,并使得该体系中BaSO4的成核活性低于硅烷和处理的体系 .本文探讨了由复合体系的熔体粘度定量比较填充复合体系中聚合物 填料界面相互作用的方法 ,讨论了界面改性对复合体系流变性质和结晶行为影响的机理  相似文献   

5.
A novel compound, which exhibits “star-like” architecture and is expected to be a promising flow improver for paraffinic oils, was presented in the current work. This material was facilely synthesized based on β-cyclodextrin molecule via a catalytic esterification procedure under mild experiment conditions. The chemical formation was characterized by FT-IR, 1H-NMR, and elemental analysis, respectively. The experimental data revealed that each β-cyclodextrin was attached by approximately seven C14 chains. This type of architecture is supposed to be appropriate to co-crystallize with paraffin melocules through taking the place of a paraffin in crystal lattic and thus disperse the agglomeration of wax crystals. This hypothesis was verified through a yield stress test and rheological analysis. It was observed that after treatment with this compound, the paraffinic oil yielded at a much lower stress value compared to the untreated oil. Moreover, a significant shift of the apparent viscosity vs. temperature curve to the left field occurred. These results demonstrated the capacity of this synthesized compound in enhancing the flowability of paraffinic oils.  相似文献   

6.
Polypropylene (PP) and High density polyethylene (HDPE) / Polypropylene (PP) blend with different biodegradable additives (Granular starch/iron oxide mixture, Bioefect 72000 and Mater-Bi AF05H) were selected for degradation experiments. All the samples, processed by injection as seedboxes, have been subjected to an outdoor soil burial test and removed at different periods of time between 0 and 21 months. Their chemical structure and morphology have been analysed. Studies of dynamic-mechanical relaxation spectra of the samples before and after each exposure time have been carried out. The three characteristic relaxation zones α, β and γ, in order of decreasing temperature, have been obtained. It has been observed that due to the degradation process both, the HDPE/PP blend and the PP matrix, become more brittle than the undegraded ones regardless of the additive used. Degradation seems to start from the molecular chains of the amorphous phase or interfacial region. However the analysis of the mechanical behaviour manifested that the crystalline zone is also been affected by the exposure time.  相似文献   

7.
Accumulation of paraffin wax in the equipment for petroleum production causes large financial losses. The most effective and most economic means of avoiding deposition is often to add chemical additives to the crude oil, but it is not easy to find the most suitable additive for a particular situation because the phenomena involved are too complex for traditional approaches. Principal component analysis is used for data reduction of parameters to represent chemical additives and crude oils. On the basis of physicochemical properties (including spectral parameters) and the activity of additives on the crystallisation temperature of the paraffin wax, crude oils are classified into two families and chemical inhibitors into three families. A model for predicting the activity of additives is discussed.  相似文献   

8.
The effect of sodium lauryl sulphate (SLES) surfactant and the operating temperature on the drop size distribution of a 350 cSt Dow Corning 200 series oil water dispersion was successfully studied. The dispersion was prepared in a standard 6 litres mixing tank at different impeller speeds. A measurement of the SLES critical micelle concentration (CMC) at 25°C was carried out. The interfacial tension of silicon oil water under various SLES concentration at a temperature range of 25 to 80°C was accomplished. Results showed that the interfacial tension of the silicon oil water decreased as the operating temperature increased and as the surfactant concentration increased. When the operating temperature was increased at the highest SLES concentration tested, a decrease of d 32 was observed. This was attributed to the possibility of hydration of the surfactant at high temperature. Same behavior was observed when measuring the drop size distribution at constant temperature but different SLES concentration. It was found that the mean drop size decreases with mixing time. Different slopes of the change of the median drop size with time were obtained for different SLES concentration. For the same concentration, the slope changes after 1 hour. The degree change of the slope is due to the change of interfacial area of the oil water as mixing time elapsed and the depletion of the surfactant concentration.  相似文献   

9.
The purpose of this study is to obtain the interaction between heavy oil components and petroleum sulfonate (NPS). In this article, the effects of pH, NaCl concentration, and NPS on the oil–water interfacial tension (IFT) of Gudao crude oil and its polar components were investigated. The results show that the NPS concentration corresponding to turning point of IFT is 0.001 g·mL?1. This is lower than the CMC of NPS (0.0015 g·mL?1) as there is a positive synergetic effect between NPS and the active substances of crude and its components, and the strength of their interaction depends on the interfacial activity of crude components. In simulated system of crude and polar components with 0.1 wt% NPS, at basic condition, the acidic substances in the polar components create naphthenates (the component whose acid number is higher creates more naphthenates), leading to lower IFT, so the interaction between heavy oil components and NPS is stronger in the basic condition. Proper concentration of NaCl in the stimulated systems improved the hydrophile-lipophile balance of emulsifier (NPS), accelerated the well-regulated adsorption of NPS in oil–water interface, and increased the interfacial activity of NPS, the interaction between heavy oil components and NPS was also enhanced.  相似文献   

10.
The dilational properties of a branch-shaped polyether-type nonionic demulsifier (PEB), a comb-shaped polyether-type nonionic demulsifier (PEC), and a star-shaped polyether-type nonionic demulsifier (PES) at the decane–water interfaces were investigated by Langmuir trough method through oscillating barrier and interfacial tension relaxation methods, which are mainly in the influences of oscillating frequency and bulk concentration on dilational properties. Meanwhile, the effect of demulsifiers on interfacial dilational modulus of diluted crude oil was also explored. The experimental results indicate that all demulsifiers can decrease the dilational modulus of diluted crude oil at the experimental concentration. The addition of PEB causes the dilational modulus of crude oil to be lower than that at the water–decane interface. The demulsifier PEC has a similar effect with PES to influence the interfacial film of crude oil: at low concentration, the dilational modulus of mixed interfacial film is lower than that of demulsifier alone, while at high concentration, the dilational modulus of mixed interfacial film is slightly higher than that of demulsifier alone. The dependence of static modulus on the bulk concentration is consistent with the trend of interfacial dilational modulus with concentration for demulsifiers PEB, PEC, and PES. The studies about the structure modulus show that the new demulsifiers PEC and PES have a stronger ability than branch-shaped demulsifier PEB to destroy the interfacial film.  相似文献   

11.
Hydroisomerization of n-paraffin to obtain branched chain paraffin plays an important role in producing high octane number gasoline blending component, improving low temperature performance of diesel and producing HVI lubricant oil. Mesoporous molecular sieve SAPO-11 that has proper acid strength and good shape selectivity show excellent catalytic performance on hydro-isomerization.  相似文献   

12.
Two crude oil samples collected from Paniro and Tangri (Sindh) southern Pakistan. The distillate fractions of both crude oil samples were analysed by U.V‐visible spectrophotometer and column chromatography for hydrocarbon group types. It was found from the physico‐chemical study of these crude oils that Tangri crude oil contains mostly paraffinic contents while Paniro crude oil samples are rich in aromatics. It was concluded from all the experiments that Tangri crude oil is paraffinic in nature; while Paniro crude oil is naphthenic in nature, further it was observed that Tangri crude oil processing would be environmentally friendly compared to Paniro crude oil, because Paniro crude contains a high amount of polyaromatics.  相似文献   

13.
段明  陶俊  方申文  施鹏  李珂怡  王承杰  张衡 《化学通报》2015,78(12):1128-1132
研究了环烷酸对油水界面膜界面张力、弹性模量、损耗模量以及界面膜破裂速率常数的影响,同时对环烷酸与沥青质之间的相互作用进行了测定。结果表明,环烷酸使得原油油水界面张力下降;弹性模量随着环烷酸加量以及振荡频率的增加都分别逐渐增大,并且最终都趋于平衡;在任何振荡频率值时,损耗模量都随着环烷酸加量先增大后减小;当环烷酸加量增加时,界面膜破裂速率常数降低。环烷酸与沥青质之间存在相互作用,随着环烷酸加量的增加,其对沥青质界面膜弹性模量的影响与对原油界面膜弹性模量的影响相似,表明环烷酸主要是通过与沥青质相互作用而促进乳状液稳定性的。  相似文献   

14.
Demulsification of a synthetic water in oil (W/O) crude oil emulsion was studied by measuring water–oil interfacial properties such as life time and thinning rate of oil film in the presence of various demulsifiers. The results indicated that the interfacial elasticity decreased both the strength and the life time of oil film and film thickness when adding the demulsifiers. The oil film broke when film thickness came to a critical level. As for a demulsifier, the interfacial elasticity was decreased with demulsifier concentration increase, and stayed constant above a critical demulsifier concentration. The rate of dewatering is related to interfacial elasticity. When different demulsifiers were compared, the more the interfacial elasticity was lowered, the more efficient was the dewatering. The mechanism of the different types of demulsifiers was discussed based on the experimental results. The demulsifiers partially replaced the emulsifiers, which led to the interfacial elasticity decreased. The effect of chemical structure of the demulsifiers on water–oil interfacial film was studied.  相似文献   

15.
在引发剂过氧化二异丙苯、二官能度单体新戊二醇二丙烯酸酯和自由基活性调控剂二甲基二硫代氨基甲酸锌的存在下,使高密度聚乙烯进行熔融支化反应.研究表明,转矩曲线上的反应峰顶对应最佳反应时间,由此获得了凝胶量低的长链支化高密度聚乙烯.熔融支化反应使聚乙烯的分子量分布变宽,其支化程度随单体含量的增加而增大,呈现出更加明显的剪切变稀行为;长链支化结构的引入使改性聚乙烯的结晶度降低,长支链的成核作用使起始结晶温度增加,球晶尺寸明显减小.改性聚乙烯的支化程度和大分子拓扑结构的变化对耐环境应力开裂性能的影响显著,当单体含量超过0.6 phr时,长链支化分子形态从类似不对称星形转变为梳形,使得高密度聚乙烯的耐环境应力开裂时间产生突变,达1000 h以上,同时强度、模量和冲击韧性均得到明显提高.  相似文献   

16.
纳米CaCO_3/相容剂/PP中的界面相互作用研究   总被引:1,自引:0,他引:1  
采用不同相容剂(PP-g-MAH、POE-g-MAH和EVA-g-MAH)制备了不同界面相互作用的纳米CaCO3(CC)/相容剂/PP体系,研究了相容剂/PP和相容剂/CC界面相互作用对PP/CC的结晶形态、结晶行为、熔融特性和力学性能的影响.观察到PP/CC界面相互作用提高PP结晶温度和PP/CC的模量和冲击强度,但降低了屈服强度.相容剂/CC界面相互作用进一步提高了PP/CC的结晶温度.PP/相容剂界面相互作用取决于PP与相容剂相容性.PP/PP-g-MAH相容性高有利于提高PP/CC的异相成核作用和PP/CC屈服强度和模量,但降低冲击强度.PP/POE-g-MAH部分相容对相容剂/CC界面的异相成核作用、PP/CC屈服强度和模量影响不大,可明显提高冲击强度.但PP/EVA-g-MAH不相容导致PP/CC冲击强度明显降低.  相似文献   

17.
This work was concerned with the dependence of the interfacial tension (Gamma(SL)) on surface degree of oxygen content and on polymer branching degree. The static Gamma(SL) was evaluated by contact angle (theta;(c)) and the dynamic Gamma(SL) by fluorescence depolarization of molecular probes seeded in induced flows of monoethylene glycol. The latter results were interpreted using statistical covariant analysis. Two different systems of flowing films were studied: free films flowing on the surfaces on which they impinge and films flowing inside 1-mm-thick microflow cells. The solid surfaces were polyethylene of low density, medium density, high density, and linear with low density, polypropylene, vinyl acetate co-polymer with oxygen content of 15% and 28%, borosilicate, and tin dioxide. Increase in oxygen content of the surface decreased both the static and the dynamic Gamma(SL), which demonstrated that the presence of oxygen atoms hindered wetting. Only the dynamical Gamma(SL) was sensitive to polymer branching, and it increased as branching degree decreased. This was attributed to the higher hydrogen-atom density at the surface, which favored temporary intermolecular bonds between the surface and the flowing liquid.  相似文献   

18.
Paraffin deposition on cold metallic surfaces in crude oil production, collection, and transportation is studied. Comparative analysis is made of the efficiencies of various paraffin inhibitors in West-Siberian paraffin oils. The mechanism of action of the additives is analyzed in relation to the phase and structural transitions in them in model systems.  相似文献   

19.
The impact propylene copolymer(IPC)and isotactic polypropylene(iPP)were separately selected to prepare laminates with high density polyethylene(HDPE)by hot press.The peel forces of IPC/HDPE and i’PP/HDPE laminates were examined,and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate.According to the special microstructure of IPC,the co-crystallization of the ethylene segments in ethylene-propylene block copolymer(EbP)component of IPC and the PE chain in HDPE was proposed to explain the high-strength welding.The DSC results indicated that there indeed existed some interaction between IPC and HDPE,and the crystallizable PE component in IPC could affect the crystallization of HDPE.The scanning electron microscope(SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase,indicating the good miscibility between HDPE and EbP components of IPC.According to the above results,the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.  相似文献   

20.
In order to improve the performance of inorganic/organic composites, aluminum trihydroxide (ATH) core composites with a styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (MAH‐g‐SEBS) shell phase, and P‐N flame retardant as a synergistic agent, were prepared through an interface design. The effects of polyethylene glycol (PEG) content on the interfacial interaction, flame retardancy, thermal properties, and mechanical properties of high‐density polyethylene (HDPE)/ATH composites were investigated by small angle X‐ray diffraction, rotational rheometer, limiting oxygen index, thermogravimetric analysis (TGA), and tensile testing. The ATH synergistic effects of P‐N flame‐retardant improved the combustion performance of HDPE/ATH/PEG(3%)/MAH‐g‐SEBS/P‐N (abbreviated as HDPE/MH3/M‐g‐S/P‐N) composite by forming more carbon layer, increased the elongation at break from 21% to 558% compared to HDPE/ATH, and increased the interface thickness from 0.447 to 0.891 nm. SEM results support the compatibility of ATH with HDPE increased and the interfacial effect was enhanced. TGA showed the maximum decomposition temperature of the two stages and the yield of the residue at high temperature increased first and then decreased with the increase of PEG content. Rheological behavior showed the storage modulus, complex viscosity, and the relaxation time initially increased and then decreased with the increase of PEG content indicating PEG, M‐g‐S, and ATH powder gradually formed a partial coating, then a full coating, and finally an over‐coated core‐shell structured model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号