首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑力-电-磁-热等多场耦合作用,基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析,并得到了问题的解析解.利用Hankel积分变换法求解了磁-电-弹性材料中的热传导及控制方程,讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题,利用积分变换和积分方程技术,通过在边界表面上施加应力自由及磁-电开路条件,推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式.获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力,电位移和磁通量的解析解.数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响.当温度载荷作用的圆域半径增大时,最大正应力发生的位置会远离半无限大体的边界;反之当温度载荷作用的圆域半径减小时,最大应力发生的位置会靠近半无限大体的边界.电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化,而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关.本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

2.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

3.
应用复变函数方法,研究了含有两个圆孔无限大电致伸缩材料的二维应力集中问题。基于精确的电学和力学边界条件以及复变函数级数表示法,给出了孔边电场和应力场的一般解;在具体数值计算中,通过令两孔相距足够远得到单孔问题的近似解,并与已有单孔精确解比较,验证了本文解的正确性;通过改变孔内介质的介电常数和孔的位置讨论了孔周应力的分布规律。结果表明:当两孔距离很大时,圆孔孔周应力分布不受另一孔的影响;一般情况下孔内的电场很微弱,对孔周应力影响很小,可略去不计;当两孔圆心连线垂直于外加电场时,孔周应力峰值达到最大。  相似文献   

4.
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.  相似文献   

5.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

6.
分析了嵌入无限大弹性板中的圆板在变温时的热屈曲问题。由于圆板的热膨胀系数与无限大弹性板的热膨胀系数不同,温度变化时圆板中会产生压应力。当压应力达到其临界值时,圆板会发生热屈曲。首先,基于弹性力学平面应力问题的基本理论,得到圆板和无限大弹性板的应力和位移;然后建立圆板热屈曲的控制微分方程,求得临界屈曲温度的解析解和数值解,着重讨论圆板和无限大弹性板的材料物性参数的关系对圆板临界屈曲温度的影响。  相似文献   

7.
分析了嵌入无限大弹性板中的圆板在变温时的热屈曲问题。由于圆板的热膨胀系数与无限大弹性板的热膨胀系数不同,温度变化时圆板中会产生压应力。当压应力达到其临界值时,圆板会发生热屈曲。首先,基于弹性力学平面应力问题的基本理论,得到圆板和无限大弹性板的应力和位移;然后建立圆板热屈曲的控制微分方程,求得临界屈曲温度的解析解和数值解,着重讨论圆板和无限大弹性板的材料物性参数的关系对圆板临界屈曲温度的影响。  相似文献   

8.
苗丹  刘一华 《应用力学学报》2016,(4):589-595,735
采用弹性力学的应力函数法,分析了上表面受均布载荷作用的上下层弹性模量和高度不同的双层叠合简支梁,对简支端提出了两种等效边界条件,得到了相应的两种解析解。运用有限元分析软件ANSYS,对不同组合的钢-铝双层叠合简支梁进行了数值计算,并与解析解进行了比较。结果表明:两种等效边界条件仅对弯曲正应力和位移有影响,对挤压应力和切应力没有影响;两种解析解的相对误差在1.2%以内;当跨高比超过6时,最大应力的解析解与有限元解的误差在4.4%以内;上下层对调后,两层中的应力基本不变;当上下层之间有摩擦时,弯曲正应力的外侧值大于内侧值,上、下层的中性层都由相应的几何中面向接触面偏移。  相似文献   

9.
运用广义复变函数方法,通过构造适当的广义保角映射研究了含有共线双半无限裂纹的正交异性复合材料板的平面弹性问题,得出了部分裂纹面上受均匀面内载荷时应力场与两裂纹尖端处应力强度因子的解析解。结果表明:应力场的大小不仅与材料的几何构型及外载荷有关,还与材料的弹性常数有关,这是正交异性复合材料不同于各向同性材料的显著特征;两裂纹尖端处应力强度因子的大小只与材料的几何构型及外载荷有关;当两裂纹尖端的距离趋于无穷大时,所得到的解析解可退化为已有的正交异性复合材料板中半无限裂纹问题的解,通过将其与已有文献中的结果进行对比,验证了本文解析解的正确性。并通过数值算例分析了裂纹面上的受载长度、两裂纹尖端的距离对应力强度因子的影响规律以及两裂纹之间的相互作用。  相似文献   

10.
受一般载荷的楔:佯谬的解决   总被引:4,自引:2,他引:4  
对于一个楔,当其表面受有与r~n(n≥0)成正比的外载荷时,按照经典弹性力学的解,对于顶角2α为π或2π的楔,其应力为无限大。这个佯谬,对于n=0的情形,已由Dempscy和T.C.T.Ting解决。本文研究n>0的一般情形。  相似文献   

11.
含圆孤裂纹系的压电材料反平面应变问题   总被引:5,自引:0,他引:5  
侯密山 《力学季刊》1996,17(3):239-244
应用复变函数解析延展原理,并通过求解Riemann-Hilbert问题,得到了含圆弧裂纹压电材料反平面应变问题的一般解,对单个圆弧裂纹的情形,给出了封闭形式的复函数解和场强度因子,结果表明,当无限远处或裂纹表面同时受机械载荷(应力τ^∞或Tz)和电载荷(电位移D^∞或电荷q)联合作用时,应力强度因子仅与机械载荷有关,而电位移动强度因子仅与电载荷有关。  相似文献   

12.
采用有限元法对具有典型的开孔结构进行分析时,常常难以保证良好的单元形态,同时也难以兼顾计算效率和精度.本文采用具有两套覆盖系统的数值流形方法对此类结构开展分析,参考无限大板圆孔应力问题的理论解答,通过扩展局部逼近的基,构造了一种适用于平面圆孔问题的特殊流形单元,基于数值流形理论采用程序实现,并对不同载荷条件和几何尺寸下的平面圆孔问题进行了计算.结果 表明,相较于有限元法,本文方法在计算精度和收敛速度上均具有显著优势.上述结果也充分体现了数值流形方法在处理具有复杂几何构型的结构时的优越性,在工程结构领域具有的广阔应用前景.  相似文献   

13.
无限粘弹性平面中孔洞扩展的时变力学解析解   总被引:3,自引:0,他引:3  
从粘弹性时变力学基本方程出发,针对Maxwell本构模型,导出了双向等压下粘弹性平面中圆孔半径任意规律扩展时的时变力学解析解.在内径线性时变时,其结果与用对应原理法得出的解相同,其解的可靠性得到验证.与对应原理法相比,文中的结果适用于半径任意时变情况,更具一般性.  相似文献   

14.
有限圆板内孔冷挤压和过盈配合问题的弹塑性分析   总被引:1,自引:0,他引:1  
1 引言在工程实际中,孔受内压、过盈配合及冷挤压强化等问题大量存在.分析这类问题的应力应变场十分迫切.对此已进行了许多理论分析.数值分析和实验测量等方面的工作.后两者因工作量大而不便使用,而对应变强化材料的理论解,就作者所知,仅有Hsu 和Forman 对无限大板受内压的精确解公开报道.而实际构件都是有限尺寸的.所以对含孔有限圆板在上述载荷条件下的解析解是十分有益的.  相似文献   

15.
本文研究含双共线裂纹无限大平板的平面弹性问题,目的是要确定当裂纹上下表面受到任意的张开型载荷(正应力)作用时,板内的应力状态,特别是裂纹尖端上的应力强度因子.已有的若干文献考虑的是均布正应力情况下的问题,只是本文所处理的情况的一个特例.1.问题和基本解答考虑图1所示的含裂纹无限大平板.用t 表示裂纹位置线L 上的坐标x,我们要确定当裂纹上下表面受到任意的正应力σ(t)作用时,板内的应力和应力强度因子的计算公式.为此,就要解出由下列边界条件确定的一个平面弹性问题:  相似文献   

16.
在无限大正交各向异性体弹性平面上对复合材料桥纤维平行自由表面的内部中央裂纹提出了桥纤维拔出的动态裂纹模型。通过复变函数将其转化为Reimann-Hilbert混合边界值问题。求得了裂纹在坐标原点受载荷Px/t、Px2/t作用的解析解。利用这一解析解可通过迭加原理求得任意复杂问题的解。  相似文献   

17.
利用应力函数半逆解法,研究了均布载荷作用下、材料属性在厚度上任意变化的功能梯度简支梁弯曲的解析解,给出了各向应力应变与位移的解析显式表达式.首先根据平面应力状态的基本方程,得出了功能梯度梁的应力函数应满足的偏微分方程,并根据应力边界条件得出了各应力分布的表达式;进而根据功能梯度材料的本构方程和位移边界条件,得出了应变和位移的分布.最后,通过将本文的解退化到均质各向同性梁并与经典弹性解比较,证明了本文理论的正确性,并求解了材料组分呈幂律分布的功能梯度梁的应力和位移分布,分析了上下表层材料的弹性模量比λ与组分材料体积分数指数n对应力和位移分布的影响.  相似文献   

18.
空腔和裂纹缺陷通常共存于深部地下岩体中,它们共同影响着岩体的结构安全性与稳定性。为了探究动力扰动载荷下圆形空腔对裂隙岩体内裂纹扩展行为的影响规律,提出了不同圆孔倾角的直裂纹空腔圆弧开口试件(circular opening specimen with straight crack cavity, COSSCC),利用自制大型落锤冲击实验装置进行动态加载实验,同时采用裂纹扩展计系统测试了裂纹的动态起裂时刻与裂纹扩展速度等各种断裂力学参数,随后采用有限差分软件Autodyn进行裂纹扩展路径与圆孔周围应力场的数值分析,并采用有限元软件Abaqus计算裂纹的动态起裂韧度与裂纹扩展过程中的动态扩展韧度。结果表明:(1)当圆孔倾角θ小于10°时,裂纹扩展路径会偏折并穿过圆孔表面;当圆孔倾角θ为20°与30°时,裂纹扩展路径向圆孔方向发生偏折但不会穿过圆孔,圆孔具有明显的裂纹扩展引导作用; 当圆孔倾角θ为40°与50°时,裂纹扩展路径不会发生偏折,圆孔引导作用明显减弱。(2)当裂纹扩展路径达到圆孔空腔附近时,裂纹尖端的拉伸应力区与圆孔边缘的拉伸应力区发生重合,此时裂纹扩展速度显著增大,裂纹动态断裂韧度显著减小。(3)裂纹的偏折方向与裂纹尖端最大周向应力的方向基本一致。(4)裂纹动态断裂韧度始终小于裂纹起裂韧度,且裂纹动态断裂韧度与裂纹动态扩展速度呈负相关关系。裂纹动态扩展速度越大,裂纹动态断裂韧度越小。  相似文献   

19.
对于含圆孔及孔边非均匀材料圆环的无限大薄板,假设非均匀材料的弹性模量沿径向按照指数函数变化,而泊松比为常数,分别导出了双轴拉伸和纯剪切作用时孔边及界面处的应力集中系数的解析解.通过数值算例详细分析了非均匀材料圆环的弹性模量的变化对无限大薄板的孔边及界面处的应力集中系数的影响.研究结果表明,合理选择孔边非均匀材料圆环的材料性能变化参数可有效地缓解薄板的孔边应力集中程度.本文的研究结果可为含圆孔的薄板的设计提供一定的参考.  相似文献   

20.
本文在文献[1]所得结果的基础上,建立了零曲率闭口壳当载荷沿壳表面及沿边界变化不过于急剧时,在各种边界条件下的二次近似渐近解法.将壳中的应力状态分为三种基本类型:薄膜应力状态(包括薄膜静力平衡方程的特解与齐次解)、纯弯应力状态及简单边界效应应力状态.按面向约束是否“完全”,即能否保证中心面为“不可变”的两种不同情况讨论了求解步骤.当中心面为“不可变”时,可以先解出薄膜及纯弯应力状态,然后求解简单边界效应应力状态.文中给出了在各种边界条件下各基本应力状态的相对量级关系.当中心面“可变”时,只在当载荷满足一定条件的特殊情况下才能按上述步骤求解,而在一般载荷情况下上述步骤不再适用,必须将各应力状态联立求解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号