首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the help of 2D-3V (two dimensional in space and three dimensional in velocity) Vlasov simulations we show that the magnetic field generated by the electromagnetic current filamentation instability develops magnetic islands due to the onset of a fast reconnection process that occurs on the electron dynamical time scale. This process is relevant to magnetic channel coalescence in relativistic laser plasma interactions.  相似文献   

2.
A model is developed that describes the transition region between a quasineutral plasma and a planar negative electrode and in which the electron velocity distribution is represented as the sum of two Maxwellian distributions with different temperatures or as the sum of a Maxwellian distribution and distribution corresponding to an electron beam directed toward the electrode. Criteria for the formation of a sheath of positive space charge and a secondary plasma in the transition region are derived. An analysis is made of the dependence of the structure of the transition region on the parameters of the electron distribution, the space charge density distribution in the sheath, and the density of the ion current to the electrode. The criteria obtained are compared with the Bohm criterion.  相似文献   

3.
The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10 11 cm -3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.  相似文献   

4.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

5.
The stability problem of a plasma immersed in a high frequency field is studied on a simple model. It is supposed that the fundamental h. f. electrostatic eigenmode having the frequency lower than the electron cyclotron frequency is excited in a slab of a cold collisionless magnetized plasma with the symmetrical density profile. The stability of low-frequency short-wavelength flute perturbations is investigated. Averaging over fast time oscillations and by using the WKB method to cope with the problem of the space inhomogeneity we have obtained the expression for the electron drift velocity. Making use of this velocity and quasineutrality condition we have derived the local dispersion equation. It is shown how the growth rate depends on the amplitude of the h. f. mode and that h. f. eigenmodes having the frequency close to the plasma frequency in the middle of the slab can partially stabilize the gravitational flute instability.The authors wish to thank Dr. R.Klíma for helpful discussion.  相似文献   

6.
刘占军  朱少平  曹莉华  郑春阳 《物理学报》2007,56(12):7084-7089
应用一维Vlasov和Maxwell耦合程序详细研究了激光等离子体相互作用中的基本问题——受激拉曼散射(SRS). 通过研究发现, SRS的产生与电子速度分布函数在相空间中的结构密切相关, 当电子速度分布函数形成相空间涡旋时,背向SRS光大幅增加,而当电子等离子体波相速度附近的电子速度分布函数曲线变平坦后, 背向SRS光基本停止发生. 在模拟中观测到了SRS的爆发、电子速度分布函数形成相空间涡旋、电子俘获等清晰的物理图像. 关键词: Vlasov-Maxwell模拟 受激拉曼散射  相似文献   

7.
Nonstationary 1D equations describing the motion of electrons in a double plasma layer subjected to the self-consistent electric field of the space charge are investigated with allowance for friction force. Analytical solutions to a set of nonlinear hydrodynamic equations for plasma electrons are derived. The variation of the electric field strength, as well as of the electron velocity and concentration, in space and time is found. Electron plasma motions of different types of symmetry are characterized in terms of dynamic parameters.  相似文献   

8.
Reflex klystron electron oscillation, occurring in a plasma potential well formed in a system consisting of plasma and two electrodes (filaments and a mesh grid which is at floating potential), was observed in a very simple device with only filaments and a mesh grid. This oscillation mechanism consists of three elements: 1) an acceleration region on the side in which filaments are located, which accelerates primary electron beams emitted from filaments; 2) a deceleration region on the side in which the mesh grid is located, which causes the reflection of the beams; and 3) a plasma region. In addition, the velocity modulation of primary electron beams is given by the electron plasma oscillation at the presheath on the filament side. The maximum amplitude and frequency of an oscillation obtained by this mechanism were Vpp=210 mV 210 mV and f=200 MHz, respectively. These values can be controlled by the discharge potential  相似文献   

9.
很多关于等离子体鞘层的研究工作都是基于电子满足经典的麦克斯韦速度分布函数,而等离子体中的粒子具有长程电磁相互作用,使用Tsallis提出的非广延分布来描述电子更为恰当.本文建立一个具有非广延分布电子的碰撞等离子体磁鞘模型,理论推导出受非广延参数q影响的玻姆判据,离子马赫数的下限数值会随着参数q的增大而减小.经过数值模拟,发现与具有麦克斯韦分布(q=1)电子的碰撞等离子体磁鞘对比,具有超广延分布(q<1)和亚广延分布(q>1)电子的碰撞等离子体磁鞘的结构各有不同,包括空间电势分布、离子电子密度分布、空间电荷密度分布.模拟结果显示非广延分布的参数q对碰撞等离子体磁鞘的结构具有不可忽略的影响.希望这些结论对相关的天体物理、等离子体边界问题的研究有参考价值.  相似文献   

10.
刘文正  王浩 《强激光与粒子束》2013,25(08):2111-2116
采用放电电流为100~300 A、持续时间为13 s的单脉冲电源,设计了两种同轴电极结构作为放电阳极,分别为筒状电极、喷嘴状电极。利用MAXWELL 3D电场仿真软件对两种电极结构下的电场分布进行了仿真分析,并采用探针法对放电生成的等离子体的参数进行了测量,分析讨论了同轴电极结构对真空放电等离子体生成特性的影响。选取喷嘴状电极结构作为阳极,分别测量了采用铅、铝、铜三种材质的阴极时生成的等离子体的扩散速度及能量。实验与仿真结果表明:当阳极为喷嘴状电极时阴极尖端的电场强度较大,测得放电电流较大,击穿电压较低,等离子体密度也较大;采用铝材质阴极时生成的等离子体扩散速度最快,采用铅材质阴极时生成的等离子体的离子动能最大。  相似文献   

11.
采用放电电流为100~300 A、持续时间为13 s的单脉冲电源,设计了两种同轴电极结构作为放电阳极,分别为筒状电极、喷嘴状电极。利用MAXWELL 3D电场仿真软件对两种电极结构下的电场分布进行了仿真分析,并采用探针法对放电生成的等离子体的参数进行了测量,分析讨论了同轴电极结构对真空放电等离子体生成特性的影响。选取喷嘴状电极结构作为阳极,分别测量了采用铅、铝、铜三种材质的阴极时生成的等离子体的扩散速度及能量。实验与仿真结果表明:当阳极为喷嘴状电极时阴极尖端的电场强度较大,测得放电电流较大,击穿电压较低,等离子体密度也较大;采用铝材质阴极时生成的等离子体扩散速度最快,采用铅材质阴极时生成的等离子体的离子动能最大。  相似文献   

12.
The stabilization effect of a strong HF (pump) electrical field and plasma electrons on a two-stream (Buneman) instability in a plane relativistic warm plasma waveguide is investigated; using the separation method to solve the two-fluid plasma model we separate the problem into two parts. The “temporal” (dynamical) part enables us to determine the frequencies and growth rates of unstable waves; this part within the redefinition of natural frequencies coincides with the system describing HF suppression of Buneman instability in uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are determined from the solution of a boundary-value problem (“space part”) taking into account specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic thermal velocity. It is shown that the growth rate of instability in relativistic warm plasma is reduced compared to non-relativistic (cold or warm) plasma and relativistic cold plasma. In addition, it is found that the plasma electrons have no effect on the solution of the space part of the problem.  相似文献   

13.
The reflection of a test electromagnetic wave normally impinging on a plasma surface is investigated within the formalism of the surface impedance. The plasma is assumed to possess an anisotropic two-temperature bi-Maxwellian electron velocity distribution function. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one, the degree of ellipticity depending on the electron temperature anisotropy. Polarization modifications of the reflected wave are particularly important in the conditions of the anomalous skin-effect, when the influence of the wave magnetic field on the electron kinetics in the skin layer is strong. Relations are reported connecting the reflected wave basic parameters to those of the reflecting plasma surface, making possible, through the experimental determination of the reflected wave characteristics, to find the plasma electron concentration and the two effective temperatures. Received 21 May 2002 / Received in final form 21 August 2002 Published online 6 November 2002 RID="a" ID="a"e-mail: zarcone@unipa.it  相似文献   

14.
为了研究高速动态气流中的电子束等离子体特性,建立了一个由蒙特卡罗模型、多组分等离子体模型与计算流体力学模型组成的多阶段耦合数值模型,在临近声速气流条件下,对1.33104 Pa空气电子束等离子体特性进行了研究。结果表明,电子束能量沉积具有极强的空间不均性,电子束激发下的风洞流场呈现不同的性质,亚声速流场下游边界区密度减小,而在超声速流场中可诱发弱激波;相比于静止气体,在动态气流中等离子体密度下降,且存在额外的输运行为,使其向气流下游输运,但在临近声速条件下,气流速度大小对气流下游等离子体分布的影响不大;电子束入射角对等离子体空间分布和大小均有影响。  相似文献   

15.
The formation of a plasma sheath in front of a negative wall emitting secondary electron is studied by a one‐dimensional fluid model. The model takes into account the effect of the ion temperature. With the secondary electron emission (SEE ) coefficient obtained by integrating over the Maxwellian electron velocity distribution for various materials such as Be, C, Mo, and W, it is found that the wall potential depends strongly on the ion temperature and the wall material. Before the occurrence of the space‐charge‐limited (SCL ) emission, the wall potential decreases with increasing ion temperature. The variation of the sheath potential caused by SEE affects the sheath energy transmission and impurity sputtering yield. If SEE is below SCL emission , the energy transmission coefficient always varies with the wall materials as a result of the effect of SEE , and it increases as the ion temperature is increased. By comparison of with and without SEE , it is found that sputtering yields have pronounced differences for low ion temperatures but are almost the same for high ion temperatures.  相似文献   

16.
The ion and electron temperatures and plasma flow velocities are measured and compared between atmospheric and low pressure plasma spraying systems. The measurements of ion temperature for two systems are carried out by an optical emission spectroscopy which uses the relative emissivities of isolated Ar I emission lines. The electron density and temperature are measured by a Langmuir probe rotating across the plasma jets. The ion saturation currents collected by a Mach probe at two orientations, perpendicular and parallel to the plasma jet, determine the flow velocity. The spatial distributions of electron density, plasma flow velocity, and the associated shock activity in thermal plasma jets are discussed in conjunction with their direct dependency upon the ambient pressures as well as the torch powers. Measurements on temperatures and velocity profiles of thermal plasma jets reveal the general features of the LPPS jet characteristics, i.e., higher velocity flow with lower temperature, longer heating zone of expanded flame, and more extended accelerating zone compared with those of the APS jets. The shock activity clearly exists in the form of standing shock waves in the plasma jet of LPPS in view of flow compression and abrupt velocity drop which are appeared in the results of measurements on the variations of electron density and flow velocity along the plasma jet. In the center of the plasma jet of APS, the electron density is high enough to reach the LTE criterion, and the difference between ion and electron temperatures becomes insignificant as the torch input power increases  相似文献   

17.
On the basis of a fully non-linear numerical solution of the Vlasov-Poisson equation we demonstrate that in the Fourier transformed velocity space the free streaming is a non-linear multimode phenomenon. In the transformed space the oscillatory part of the disturbance (plasma oscillations) is uncoupled from its free streaming part (the one that in the linearized treatment escapes into infinity) but the free streaming part is strongly coupled to plasma oscillations. It exercises a complicated movement in the Fourier transformed phase plane accompanied by dispersion.  相似文献   

18.
We give a simple direct derivation of the polarization response function h for linear electrostatic excitations of a plasma (without magnetic field) considering the effect of a percussion on the electrons. The physical meaning of the procedure is discussed, thus bringing into light basic facts of the plasma dielectric behavior. The result h = ?p2f0(x/t) (where f0 is the electron distribution function in velocity space and ?p the plasma frequency) is obtained without passing through the Vlasov-Poisson equations as in the standard theory. We show that the equivalence between the present method and the classic Landau analysis rests on properties of the Fourier transform applied on velocity space.  相似文献   

19.
Modeling of plasma behavior in a plasma electrode Pockels cell   总被引:1,自引:0,他引:1  
We present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, we model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, me model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, we develop a two dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. We show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. We validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory  相似文献   

20.
We analyze the response of a dipole antenna to the noise-like and/or regular (quasimonochromatic) plasma oscillations and waves. The antenna is immersed in an isotropic plasma moving with velocity greater than the electron thermal velocity. In the case of a noise field, we calculate the squared spectral power density of the noise voltage at the input of a receiving antenna for frequencies close to the electron plasma frequency. It is shown that the main contribution to the noise is made by the radiation due to the excitation of waves at anomalous Doppler frequencies. In the case of an incident monochromatic wave, the mean square voltage at the antenna input is calculated as a function of the wave frequency and angle of arrival. It is shown that the effective antenna length can differ strongly from the geometrical length of the dipole. This fact results from the dispersion of longitudinal waves ensuring that many plane waves (a continuum, in the limiting case) contribute to the re-radiated field for a given direction of propagation of the radiation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号