首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large eddy simulations of the flow between a rotating and a stationary disk have been performed using a dynamic and a mixed dynamic subgrid-scale model. The simulations were compared to direct numerical simulation results. The mixed dynamic model gave better overall predictions than the dynamic model. Modifications of the near-wall structures caused by the mean flow three-dimensionality were also investigated. Conditional averages near strong stress-producing events led to the same conclusions regarding these modifications as studies of the flow generated by direct numerical simulation, namely a distinct asymmetry of the vortices producing sweeps and ejections.  相似文献   

2.
Direct numerical simulations of compressible turbulence interacting with an initially plane shock wave are presented. The underlying model is based on the numerical solution of the Euler equations combined with direct statistical simulation. Steady-state isentropic isotropic turbulence is considered. The amplification factors for fluctuations of the thermodynamic variables, velocity, vorticity, and kinetic energy of fluctuations are analyzed; and the correlation coefficients between flow variables are studied for Mach numbers ranging from 1.2 to 3.  相似文献   

3.
We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. The Lorentz force on the magnet is sensitive to the velocity distribution that is influenced by the magnetic field. The flow transformation by an inhomogeneous local magnetic field is essential for obtaining velocity information from the measured forces. In this paper we present a numerical simulation of a spatially developing flow in a duct with laminar inflow and periodic boundary conditions. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In order to analyze the thermal pollution of the Plomin bay induced by the used cooling water released from Plomin 1 and Plomin 2 thermal power plants, flow simulations and temperature field analysis were conducted. The measurements of the bay surface temperature field were carried out as well as the corresponding 3D water flow simulations on the realistically modeled bay. The accuracy of the simulation results was evaluated by the comparison of computed and measured surface temperatures. Furthermore, numerical meshes of different density were used in order to determine model sensitivity where the results showed a significant effect of the mesh density on the simulation results. Although the simulations obtained with a denser mesh yield more accurate results and allow for the reconstruction of heated water surface flow with better reliability, the sparser mesh provided sufficiently accurate results as well. The overall temperature field obtained with the numerical model agrees well with the measured temperature values, which demonstrates the successful application of the 3D flow numerical model on the Plomin bay thermal pollution problem.   相似文献   

5.
The conduction–convection heat loss from a viscoelastic liquid, subjected to two-dimensional flow within the core of a cross-flow heat exchanger arrangement with a mixed or unmixed external fluid, is investigated with direct numerical simulations. A numerical algorithm based on the finite difference method is implemented in time and space with the Giesekus constitutive model for the viscoelastic liquids. The core-fluid is subjected to an initial Poiseuille flow, driven by an adverse pressure gradient and its temperature varies in both the longitudinal and transverse directions. The results show that a viscoelastic core-fluid choice leads to slightly higher temperature losses within the core-fluid stream as compared to a corresponding Newtonian fluid. As is expected, we also observe significantly higher temperature drops within the core-fluid for the case of unmixed ambient fluids as opposed to the mixed external fluid.  相似文献   

6.
二阶动态亚格子尺度应力模型   总被引:1,自引:0,他引:1  
提出了一个基于亚格子尺度应力与速度梯度张量之间关系的二阶动态模型.然后利用在高雷诺数的流场直接数值解的结果对此二阶模型进行检验.直接数值解的流场包括均匀各向同性强迫湍流,衰减湍流以及均匀旋转湍流.数值检验结果发现与一阶动态模型相比,二阶模型的相关系数提高.  相似文献   

7.
为了探讨Couette-Taylor流从层流到湍流过渡的方式以及流动发展到湍流之后混沌吸引子的某些特征等问题,采用低模分析方法研究了Couette-Taylor流的部分动力学行为及仿真问题,讨论了Couette-Taylor流三模态类Lorenz型方程组的动力学行为,包括定态的失稳、极限环的出现、分岔与混沌的演变和全局稳定性分析等。通过线性稳定性分析和数值模拟等方法给出了此三维模型分岔与混沌等动力学行为及其演化历程,并借此解释了Couette-Taylor流试验中观察到的部分涡流的演化过程.基于系统的分岔图、Lyapunov指数谱、功率谱、Poincaré(庞加莱)截面和返回映射等揭示了系统混沌行为的普适特征.  相似文献   

8.
In this study, we present a large eddy simulation model of the flow and scalar transport in an open channel with flexible vegetation. We propose a model for recognizing flexible vegetation to simulate the deflected height of vegetation with flexibility. A mixed scale model is modified for canopy turbulence modeling. A random walk model is used to calculate the mechanical dispersion during the scalar transport process within the canopy. A two-stage second-order nonlinear strong stability-preserving Runge–Kutta scheme is combined with the operator splitting algorithm to solve the governing equations. We verified the numerical model based on previously reported experimental data and the comparisons between the simulations and measurements were favorable. The model was then applied to simulate scalar transport within flexible vegetation, where the simulations showed that the recognition of flexible vegetation could enhance the vertical mixing and diffusion of the scalar concentration.  相似文献   

9.
Standard numerical methods used to solve the Reynolds averaged Navier–Stokes equations are known to be too dissipative to carry out large eddy simulations since the artificial dissipation they introduce to stabilize the discretization of the convection term usually interacts strongly with the subgrid scale model. A possible solution is to resort to non-dissipative central schemes. Unfortunately, these schemes are in general unstable. A way to reach stability is to select a central scheme that conserves the discrete kinetic energy. To that purpose, a family of kinetic energy conserving schemes is developed to perform simulations of compressible shock-free flows on unstructured grids. A direct numerical simulation of the flow past a sphere at a Reynolds number of 300 and a large eddy simulation at a Reynolds number of 10,000 are performed to validate the methodology.  相似文献   

10.
The generalized synchronization is studied by applying pure error dynamics and elaborate Lyapunov function in this paper. Generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation, instead of current mixed error dynamics in which master state variables and slave state variables are presented. The elaborate Lyapunov function is applied rather than the current plain square sum Lyapunov function, deeply weakening the power of Lyapunov direct method. The scheme is successfully applied to both autonomous and nonautonomous double Mathieu systems with numerical simulations.  相似文献   

11.
By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchronization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and nonautonomous double Mathieu systems are used as examples with numerical simulations.  相似文献   

12.
This paper describes a new dynamic model for a waterjet cutting system that includes a double-acting reciprocating intensifier pump. Since the system operates at high pressures the fluid flow is assumed to be compressible. The dynamic model includes the characteristics of the intensifier pump, the check valves, the accumulator, the system piping and compressible jet flow through the nozzle. The system model is presented as a set of differential-algebraic equations. Experimental results for an actual system are used to identify the discharge coefficient of the nozzle, certain unknown parameters associated with the check valve, and to determine the velocity profile of the piston in the intensifier pump. This is accomplished by formulating and solving a parameter optimization problem. The paper also includes numerical simulation results that validate the dynamic model.  相似文献   

13.
14.
针对流固耦合碰撞问题,建立了流体中固体与固体碰撞界面解析直接模拟方法,采用清晰界面浸入边界法模拟流体中的动边界问题,避免了传统贴体网格方法在求解流体中存在固体间碰撞问题时网格出现负体积的问题,采用基于罚函数的有限元方法对固体的运动和碰撞进行求解,以分域耦合方式实现流体域和固体域的耦合求解.通过与静止流体中球形颗粒与壁面正碰撞和斜碰撞的实验数据对比,验证了建立的数值模拟方法对流体中固体与固体碰撞数值模拟的正确性,获得了流体域流场在碰撞前后随时间的变化,同时通过该文建立的数值模拟方法也获得了固体域中固体的碰撞力和应力.未来,将把该数值模拟方法应用到流体流动环境中,如固体颗粒对管道的冲蚀、流体诱导海洋立管之间的碰撞、坠物对海底管道的撞击等.  相似文献   

15.
The numerical simulation of semiconductor devices is extremely demanding in term of computational time because it involves complex embedded numerical schemes. At the kernel of these schemes is the solution of very ill‐conditioned large linear systems. In this paper, we present the various ingredients of some hybrid iterative schemes that play a central role in the robustness of these solvers when they are embedded in other numerical procedures. On a set of two‐dimensional unstructured mixed finite element problems representative of semiconductor simulation, we perform a fair and detailed comparison between parallel iterative and direct linear solution techniques. We show that iterative solvers can be robust enough to solve the very challenging linear systems that arise in those simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new discrete large-sub-center system is obtained by using the Euler and nonstandard discretization methods for the corresponding continuous system. It is surprised that all dynamic behaviors of the discrete system are exactly driven by the large-center equation, for example, the stabilities, the bifurcations, the period-doubling orbits, and the chaotic dynamics, etc. Additionally, the global asymptotical stability, the existence of exact 2-periodic solutions, the flip bifurcation theorem, and the invariant set of the sub-center equation is also given. These results reveal far richer dynamics of the discrete model compared with the continuous model. Through numerical simulation, we can observe some complex dynamic behaviors, such as period-doubling cascade, periodic windows, chaotic dynamics, etc. Especially, our theoretical results are also showed by those numerical simulations.  相似文献   

17.
为了研究反应堆结构中的诸如燃料棒、蒸汽发生器和其它换热器传热管束等的流体-结构交互作用问题,利用有限体积法离散大涡模拟(large eddy simulation, LES)的流体控制方程,用有限元方法求解结构动力学方程,并结合动网格技术,建立三维流体诱发振动的数值模型,模拟直管束中流体的流动及结构振动,实现计算结构动力学(computational structure dynamics, CSD)与计算流体力学(computational fluid dynamics, CFD)之间的联合仿真.首先,基于流固耦合方法对单管的流致振动特性进行了详细分析,得到了其动力学响应与流场特性;其次基于建立的传热管束流致振动计算模型,研究了两并列管、两串列管以及3×3正方形排列管束的流致振动行为.  相似文献   

18.
We study turbulent channel flow of an electrically conducting liquid with a homogeneous magnetic field imposed in the spanwise direction. The Lorentz force is modelled using the quasistatic approximation. Direct and large–eddy simulations are performed for hydrodynamic Reynolds numbers Re=10000 and Re=20000 and the Hartmann number varying in a wide range. The main effect of the magnetic field is the suppression of turbulent velocity fluctuations and momentum transfer in the wall–normal direction. Comparing the results from direct and large–edddy simulations we show that the dynamic Smagorinsky model accurately reproduces the flow transformation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present a new numerical code which solves the Lighthill – Whitham model, the classic macroscopic model for vehicular traffic flow, in a network with multi-destinations. We use a high-resolution shock-capturing scheme with approximate Riemann solver to solve the partial differential equations of the Lighthill – Whitham theory. These schemes are very efficient, robust and moreover well adapted to simulations of traffic flows. We develop a theory of dynamic routing including a procedure for traffic flow assignment at junctions which reproduces the correct propagation of irregularities and ensures at the same time conservation of the number of vehicles.  相似文献   

20.
The current research aims at deriving a one-dimensional numerical model for describing highly transient mixed flows. In particular, this paper focuses on the development and assessment of a unified numerical scheme adapted to describe free-surface flow, pressurized flow and mixed flow (characterized by the simultaneous occurrence of free-surface and pressurized flows). The methodology includes three steps. First, the authors derived a unified mathematical model based on the Preissmann slot model. Second, a first-order explicit finite volume Godunov-type scheme is used to solve the set of equations. Third, the numerical model is assessed by comparison with analytical, experimental and numerical results. The key results of the paper are the development of an original negative Preissmann slot for simulating sub-atmospheric pressurized flow and the derivation of an exact Riemann solver for the Saint-Venant equations coupled with the Preissmann slot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号