首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowledge of in-situ fuel distributions in practical combustion devices, such as internal combustion engines, is crucial for research and devlopment purposes. Numerous imaging techniques, mostly based on laser-induced fluorescence (LIF), have been developed and yield high levels of 2-D spatial information, but generally lack the temporal resolution (frame rates) necessary to resolve important timescales at sub-millisecond levels for sustained times. A planar LIF technique for quantitatively visualizing fuel distribution is presented which gives not only high spatial resolution, but also high temporal resolution. Using a high-speed CMOS camera, a lens-coupled image intensifier, and frequency-tripled diode-pumped Nd:YAG laser allows for capturing LIF images of biacetyl that is used as a fluorescence tracer at 12 kHz (one crank-angle resolution at 2000 RPM) for hundreds of consecutive engine cycles. The LIF signal strength of biacetyl doped in iso-octane is shown to vary substantially over a wide range of temperatures and pressures. The low absorption coefficient at 355 nm and a longpass filter in the detection path exclude bias errors due to laser beam attenuation and fluorescence trapping. An intensifier gate time of 350 ns is shown to suppress the detection of phosphorescence signals under practical conditions. An example for a quantitative high-speed measurement of fuel concentration at varying pressure and temperature conditions is presented. Quantitative equivalence ratio maps are shown for the fuel injection event within a single cycle in a spark-ignition direct-injected engine, showing the ability of the technique to not only reveal static fuel concentration maps, but also the motion of the fuel cloud along with very steep gradients. Spray velocities determined from the moving fuel cloud are in agreement with previous particle image velocimetry measurements.  相似文献   

2.
We introduce a new technique for imaging oxygen concentrations in fuel/air mixtures that takes advantage of the different responses of toluene and 3-pentanone to collisional quenching by molecular oxygen. Since laser-induced fluorescence signals from both tracers upon excitation at 248 nm are spectrally well separated, simultaneous detection is possible. The technique is first applied to instantaneous imaging in turbulent mixing processes of interacting seeded air and nitrogen flows. Received: 1 August 2001 / Revised version: 29 October 2001 / Published online: 29 November 2001  相似文献   

3.
When sodium- and potassium-containing fuel additives are used in internal combustion engines, the bright fluorescence that sodium and potassium atoms emit in the burned gas zone offers a large potential for spectroscopic combustion analysis. To utilize this potential quantitatively, it is crucial to fully understand all physical and chemical processes involved. This includes (1) the temperature dependence of the fluorescence intensity due to gas-phase collisions, (2) the pressure, temperature and equivalence ratio effects on thermodynamic equilibria in the burned gas zone and (3) pressure and temperature-dependent line shapes for quantitative correction of fluorescence reabsorption. High-speed imaging of sodium and potassium fluorescence in a spark-ignited, direct injection, single-cylinder research engine was conducted under well-controlled homogeneous operating conditions at equivalence ratios ranging from 0.71 to 1.43, cylinder pressure from 3 to 15 bar and burned gas temperatures from 1,700 to 2,600 K. This study demonstrates that the influence of pressure, temperature and equivalence ratio on the fluorescence signals of sodium and potassium is understood quantitatively and establishes the potentials and limitations of this tool for burned gas temperature measurements with high temporal and two-dimensional spatial resolution in a homogeneously operated internal combustion engine.  相似文献   

4.
Laser-induced fluorescence spectroscopy of kerosene vapour was performed in a heated test cell operating between 450 and 900 K, at pressure from 0.1 to 3.0 MPa, for oxygen molar fraction between 0 and 21 %, with different laser excitation wavelengths (248, 266, 282 and 308 nm). Results show that, depending on the laser excitation scheme, kerosene fluorescence spectrum exhibits one or two fluorescence bands in the UV–visible range (attributed to aromatics naturally present in kerosene fuel). Fluorescence intensity of these bands decreases with increasing temperature, pressure and oxygen molar fraction. Different imaging strategies were derived from spectroscopic findings to simultaneously measure temperature and equivalence ratio fields in kerosene/air sprays, or flame structure and fuel spatial distribution in kerosene/air aeronautical combustors, by means of planar laser-induced fluorescence on kerosene vapour (K-PLIF).  相似文献   

5.
The temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence were studied in support of planar laser-induced fluorescence (PLIF) imaging of temperature and mixture fraction in flows of practical interest. The temperature dependencies (300–875 K) of absorption and fluorescence were measured for gaseous 3-pentanoneat atmospheric pressure in a nitrogen bath gas using 248, 266, and 308 nm excitation. The results indicate that the fluorescence signal per unit mole fraction using 248 nm excitation is highly temperature-sensitive below 600 K, while the signal from 308 nm excitation is not temperature sensitive below 500 K. For quantitative measurements over a broad range of temperatures, one must choose excitation schemes carefully to balance the trade-off between measurement sensitivity and the amount of signal at the expected conditions. As an example of such a choice and to show the capabilities of ketone PLIF techniques, we include temperature and mixture fraction images of a 300–650 K heated air jet using near-simultaneous 308 and 266 nm excitation. Received: 29 May 2002 / Revised version: 5 November 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +1-650/723-1748, E-mail: jkoch@stanford.edu RID="**" ID="**"E-mail: hanson@me.stanford.edu  相似文献   

6.
Simultaneous imaging of laser-induced fluorescence of toluene and 3-pentanone was used to determine the local absolute oxygen and residual gas concentrations present within an engine. The technique utilizes the different sensitivities of the laser-excited molecules to quenching by molecular oxygen as a means to determine quantitative images of in-cylinder oxygen concentrations. The difference in the amount of oxygen available between two operating conditions was investigated. Results are in agreement with measurements in the exhaust gas. Received: 4 June 2002 / Published online: 8 August 2002  相似文献   

7.
Laser-Induced Fluorescence (LIF) from the S1 state of acetone and 3-pentanone was studied as a function of temperature and pressure using excitation at 248 nm. Additionally, LIF of 3-pentanone was investigated using 277 and 312 nm excitation. Added gases were synthetic air, O2, and N2 respectively, in the range 0–50 bar. At 383 K and for excitation at 248 nm, all the chosen collision partners gave an initial enhancement in fluorescence intensity with added gas pressure. Thereafter, the signal intensity remained constant for N2 but decreased markedly for O2. For synthetic air, only a small decrease occurred beyond 25 bar. At longer excitation wavelengths (277 and 312 nm), the corresponding initial rise in signal with synthetic air pressure was less than that for 248 nm. The temperature dependence of the fluorescence intensity was determined in the range 383–640 K at a constant pressure of 1 bar synthetic air. For 248 nm excitation, a marked fall in the fluorescence signal was observed, whereas for 277 nm excitation the corresponding decrease was only half as strong. By contrast, exciting 3-pentanone at 312 nm, the signal intensity increased markedly in the same temperature range. These results are consistent with the observation of a red shift of the absorption spectra (9 nm) over this temperature range. Essentially, the same temperature dependence was obtained at 10 and 20 bar pressure of synthetic air. It is demonstrated that temperatures can be determined from the relative fluorescence intensities following excitation of 3-pentanone at 248 and 312 nm, respectively. This new approach could be of interest as a non-intrusive thermometry method, e.g., for the compression phase in combustion engines.  相似文献   

8.
酮类燃料可作为燃料添加剂和示踪剂在内燃机中使用,然而其化学反应动力学机理仍缺乏研究。本项工作利用快速压缩机实验平台测量了2-戊酮当量比为0.5和1.0,温度890~1130 K的条件下的点火延迟时间,并结合快速采样系统利用气相色谱对2-戊酮点火延迟过程中的7种中间组分进行了定性及定量测量。类比丁酮和1-戊烯的相关反应,构建了2-戊酮的详细化学反应动力学模型,与实验数据相对比,指出了模型优化的方向,为2-戊酮的进一步研究提供了基础.  相似文献   

9.
In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing, and fuel vaporization achieved prior to combustion, influence the formation of pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Combustor pressures (up to 14 bar) and air inlet temperatures (up to 680K) were typical of actual gas turbine engine operating conditions. Discrimination between liquid and vapor phases of the fuel was accomplished by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the droplet fluorescence intensities are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.  相似文献   

10.
A single-laser single-camera imaging technique was demonstrated for in-cylinder temperature distribution measurements in a direct-injection internal combustion engine. The single excitation wavelength two-color detection technique is based on toluene laser-induced fluorescence (LIF). Toluene-LIF emission spectra show a red-shift with increasing temperature. Temperature can thus be determined from the ratio of the signal measured in two separate wavelength ranges independent of the local tracer concentration, laser pulse energy, and the intensity distribution. An image doubling and filtering system is used for the simultaneous imaging of two wavelength ranges of toluene LIF onto the chip of a single camera upon excitation at 248 nm. The measurements were performed in a spark-ignition engine with homogeneous charge and yielded temperature images with a single-shot precision of approximately ±?6%.  相似文献   

11.
In this paper, laser-induced ignition was investigated for compressed natural gas–air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air–fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel–air mixture was investigated under different relative air–fuel ratios (λ=1.2?1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas–air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.  相似文献   

12.
The spatial and temporal evolution of an automotive hollow-cone-type spray was investigated with laser-based imaging diagnostics. Optical conditions of an IC engine were emulated with a test cell that was built from an engine cylinder head to hold a high-pressure gasoline-fuel injector. The use of iso-octane fuel that was doped with 3-pentanone allowed measurements of laser-induced fluorescence (LIF) after excitation with a KrF excimer-laser beam. A versatile optical filter system was designed and built that permits simultaneous measurements of Mie-scattering and laser-induced-fluorescence images using a single laser-light sheet and a single intensified CCD camera. The influence of background signals, caused by reflection of signal light from surfaces, laser-sheet intensity attenuation and signal decrease by scattering, was characterized. Mass distributions showed a distinct pre-spray phase, more so than the Sauter mean diameter (SMD) that was determined from the ratio of LIF to Mie signals using single pulse as well as averaged image pairs. Significant changes in SMD distributions were found after the spray had impinged on a flat surface. The impingement also led to the buildup of a liquid film whose thickness was quantitatively determined from LIF images. Received: 5 December 2000 / Revised version: 28 February 2001 / Published online: 23 May 2001  相似文献   

13.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

14.
Laminar flame propagation was investigated for pentanone isomers/air mixtures (3-pentanone, 2-pentanone and 3-methyl-2-butanone) in a high-pressure constant-volume cylindrical combustion vessel at 393–423 K, 1–10 atm and equivalence ratios of 0.6–1.5, and in a heat flux burner at 393 K, 1 atm and equivalence ratios of 0.6–1.5. Two kinds of methods generally show good agreement, both of which indicate that the laminar burning velocity increases in the order of 3-methyl-2-butanone, 2-pentanone and 3-pentanone. A kinetic model of pentanone isomers was developed and validated against experimental data in this work and in literature. Modeling analysis was performed to provide insight into the flame chemistry of the three pentanone isomers. H-abstraction reactions are concluded to dominate fuel consumption, and further decomposition of fuel radicals eventually produces fuel-specific small radicals. The differences in radical pools are concluded to be responsible for the observed fuel isomeric effects on laminar burning velocity. Among the three pentanone isomers, 3-pentanone tends to produce ethyl and does not prefer to produce methyl and allyl in flames, thus it has the highest reactivity and fastest laminar flame propagation. On the contrary, 3-methyl-2-butanone tends to produce allyl and methyl instead of ethyl, and consequently has the lowest reactivity and slowest laminar flame propagation.  相似文献   

15.
In direct-injection spark-ignition engines, fuel films formed on the piston surface due to impinging sprays are a major source of soot. Previous studies investigating the fuel films and their correlation to soot production were mostly performed in model experiments or optical engines. These experiments have different operating conditions compared to commercial engines. In this work, fuel films and soot are visualized in an all-metal engine with endoscopic access via laser-induced fluorescence (LIF) and natural incandescence, respectively. Gasoline and a mixture of isooctane/toluene were used as fuel for the experiments. The fuel films were excited by 266 nm laser pulses and visualized by an intensified CCD camera through a modular UV endoscope. Gasoline yielded much higher signal-to-noise ratio, and this fuel typically took an order of magnitude longer to evaporate than isooctane/toluene. The effects of injection time, injection pressure, engine temperature, and combustion on the fuel-film evaporation time were investigated. This film survival time was reduced with higher engine temperature, higher injection pressure, and later injection time, with engine temperature being the most significant parameter, whereas skip-fired combustion had very little effect on the film survival time. In complementary experiments, LIF from fuel films and soot incandescence were simultaneously visualized by an intensified double-frame CCD camera. At lower engine temperatures the fuel films remained distinct, and soot formation was limited to regions above the films, whereas at higher temperatures, fuel films, and hence the soot, appeared to be spread over the whole piston surface. Finally, high-speed imaging showed the spray, chemiluminescence, and soot incandescence, with results broadly consistent with fuel-film LIF and soot incandescence imaging.  相似文献   

16.
实现火焰反应区和不同中间组分的在线二维瞬态成像,在湍流燃烧的基础研究中具有十分重要的意义。用Nd∶YAG激光器的5倍频输出(212.8nm)作为光源,通过激光光解诱导荧光技术在甲烷/空气预混火焰中,成功实现了火焰反应区的瞬态成像,并首次采用该技术实现了CH_3的在线瞬态成像测量。分析了该方法同其他荧光标示物在反应区二维瞬态成像方法的优势,并研究了火焰燃烧过程中其他燃烧中间产物和不同燃空比对CH_3单脉冲成像的影响,讨论了现有条件下该技术的应用范围。根据实验结果,在燃空比Φ=1.2的条件下,在反应区我们获得了信噪比约为8的单脉冲成像,分析火焰中CH_3的单脉冲成像结果可知火焰燃空比在1.0~1.4之间时,或者火焰中CH_3的浓度大于9.3×1015 molecules·cm-3信噪比较好。该项技术在动力机械及其他研究领域的应用有十分重要的参考价值。  相似文献   

17.
Measurements of 3-pentanone fluorescence quantum yield (FQY) over a wide range of temperatures and pressures in air and nitrogen bath gases are reported and a comprehensive FQY model in support of quantitative planar laser-induced fluorescence diagnostics at elevated pressures and temperatures is presented. Measurements were made of the FQY for 20 mbar of 3-pentanone in nitrogen and air for pressures between 1 and 25 bar in a high-pressure and high-temperature cell for excitation wavelengths of 248, 266, 277, and 308 nm. The measurements were performed in nitrogen from 298 to 745 K and in air from 298 to 567 K. The 3-pentanone FQY data were used to optimize FQY model parameters, including the oxygen and nitrogen quenching rates and vibrational relaxation cascade parameters for nitrogen and oxygen. This work introduces vibrational energy dependence for cascade parameters, as well as a nitrogen quenching rate. The new 3-pentanone FQY model agrees with the measurements within 10%, as well as with fluorescence signal measurements from optical internal combustion engines at pressures and temperatures up to 28 bar and 1100 K.  相似文献   

18.
With the aim of utilizing JP-8 fuel for small scale portable power generation systems, catalytic combustion of JP-8 is studied. The surface ignition, extinction and autothermal combustion of JP-8, of a six-component surrogate fuel mixture, and the individual components of the surrogate fuel over a Pt/γ-Al2O3 catalyst are experimentally investigated in a packed bed flow reactor. The surrogate mixture exhibits similar ignition–extinction behavior and autothermal temperatures compared to JP-8 suggesting the possibility of using this surrogate mixture for detailed kinetics of catalytic combustion of JP-8. It is shown that JP-8 ignites at low temperatures in the presence of catalyst. Upon ignition, catalytic combustion of JP-8 and the surrogate mixture is self-sustained and robust combustion is observed under fuel lean as well as fuel rich conditions. It is shown that the ignition temperature of the hydrocarbon fuels increases with increasing equivalence ratio. Extinction is observed under fuel lean conditions, whereas sustained combustion was also observed for fuel rich conditions. The effect of dilution in the air flow on the catalytic ignition and autothermal temperatures of the fuel mixture is also investigated by adding helium to the air stream while keeping the flow rate and the equivalence ratio constant. The autothermal temperature decreases linearly as the amount of dilution in the flow is increased, whereas the ignition temperature shows no dependence on the dilution level under the range of our conditions, showing that ignition is dependent only on the type and relative concentration of the active species.  相似文献   

19.
A novel temperature-imaging technique based on laser-induced fluorescence of nitric oxide is presented, analyzed and applied. Multi-line rotational thermometry is combined with an efficient spectra-fitting procedure in an imaging configuration. The technique is sensitive over a wide range of temperatures and robustly applicable to different steady combustion and flow systems. Application is shown in premixed and partially premixed ethylene/air Bunsen flames with equivalence ratios between 0.7 and 3.0, and the results are compared to coherent anti-Stokes Raman-scattering temperature measurements. The technique is robust against strong elastic scattering from soot in the rich flames. It yields absolute, quantitative temperature measurements without the necessity of external calibration. PACS 07.20.Dt; 42.62.Fi; 32.50.+d; 33.20.Lg  相似文献   

20.
Effects of fuel jet penetration height on supersonic combustion behaviors were investigated experimentally in a supersonic combustion ramjet model combustor at a Mach speed of 2 and at a stagnation temperature of 1900 K. The jet-to-crossflow momentum flux ratio was varied to control the fuel-jet penetration height, using several injectors with different orifice diameters: 2, 3, and 4 mm. First, transverse nitrogen jets were observed to identify a relationship between the fuel jet penetration height and the momentum flux ratio by focusing Schlieren photography. Then, supersonic combustion behaviors of ethylene were investigated through combustion pressure measurements. Simultaneously, time-resolved images of CH* chemiluminescence and shadowgraphs were recorded with high-speed video cameras. Furthermore, a morphology of supersonic combustion modes was investigated for various equivalence ratios and fuel penetration heights in a two-dimensional latent space trained by the shared Gaussian process latent variable models (SGPLVM), considering CH* chemiluminescence images and the shock parameters. The results indicated that the penetration height of nitrogen jets was a function of the jet momentum flux ratio; this function was expressed by a fitting curve. Five typical combustion modes were identified based on time-resolved CH* chemiluminescence images, shadowgraphs, and pressure profiles. Even for a given equivalence ratio, different combustion modes were observed depending on the fuel penetration height. For an injection diameter of 3 and 4 mm, cavity shear-layer and jet-wake stabilized combustions were observed as the scram modes. On the other hand, although the cavity shear-layer and lifted-shear-layer stabilized combustions were observed, no jet-wake stabilized combustion was observed for an orifice diameter of 2 mm. Fuel penetration heights above the cavity aft wall were expected to affect the combustion behavior. Finally, a morphology of the supersonic combustion modes was clearly shown in the two-dimensional latent space of the SGPVLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号