首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrolytes of Ce1-x-y Y x Mg y O2-0.5x-y were prepared with citrate method and were characterized by inductively coupled plasma-atomic emission spectrometry, energy dispersive spectrometry, powder X-ray diffraction, and impedance spectroscopy. The effect of composition on the structure, conductivity, and stability of the electrolytes were investigated. When 0≤x≤ about 0.2 and 0≤y≤ about 0.05, the electrolytes were all single phase materials of ceria-based solid solution. However, when y> about 0.05, the electrolytes became two-phase materials, Y3+ and Mg2+ co-doped ceria-based solid solution and free MgO. The sample with nominal composition of Ce0.815Y0.065Mg0.12O2-d showed ionic conductivity at 973 K close to or even a little higher than that of similarly prepared Ce0.9Gd0.1O1.95, but had lower cost of raw materials and a little better stability in reducing atmosphere. The existing of free MgO improved the stability of the electrolytes in reducing atmosphere, but too much free MgO reduced the conductivity.  相似文献   

2.
Cyclic voltammetry, chronoamperometry and electro-chemical impedance have been used for the analysis of the following medium temperature half-cells: Ce0.85Sm0.15O1.925| La0.6Sr0.4CoO3-δ, Ce0.85Sm0.15O1.925| Pr0.6Sr0.4CoO3-δ and Ce0.85Sm0.15O1.925| Gd0.6Sr0.4CoO3-δ. The influence of the atomic mass of the A–site cation in the perovskite cathode on the oxygen reduction kinetics has been discussed. The total polarisation resistance, obtained from the Z′′, Z′-plots, increases with the rise of atomic mass of the cation in the A-site position. Two different time constants have been obtained for the oxygen electroreduction process, and the replacement of La3+ by Gd3+ in the cathode material decreases somewhat the surface catalytic activity, but the noticeably higher low-frequency series resistance, i.e. mainly diffusion-like mass transfer resistance, values have been obtained. However, the mainly diffusion-limited process at T≤773 K for Gd0.6Sr0.4CoO3-δ and the kinetically mixed process (diffusion + charge transfer) for Pr0.6Sr0.4CoO3-δ and La0.6Sr0.4CoO3-δ have been established. At higher temperature (T≥993 K) and more negative potentials, the O2 reduction process is limited mainly by the heterogeneous charge transfer step. Presented at the fourth Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005.  相似文献   

3.
The analysis of the medium temperature half-cell Ce0.8Gd0.2O1.9|70 wt% La0.6Sr0.4CoO3- (LSCO) + 30 wt % Ce0.8Gd0.2O1.9 (CGO) has been made by electrochemical impedance, cyclic voltammetry and chronoamperometry. The shape of complex impedance plots depends on temperature and cathodic polarisation of the electrode. Nyquist (Z, Z-) plots were fitted by equivalent circuit taking into account the electrolyte properties (at very high frequencies), charge transfer process at grain boundaries (at high frequencies), and medium and low frequency O2 reduction process at the cathode surface and inside the porous cathode material. Two different time constants have been obtained for the cathode process, i.e. for electroreduction of oxygen. It was found that the addition of CGO into the cathode material (LSCO) only somewhat decreases the surface catalytic activity but the noticeably higher low-frequency resistance (i.e. mainly diffusion-like mass transfer resistance RD) values at lower temperatures have been calculated. It was found that the mainly bulk diffusion-limited process at T773 K deviates toward the kinetically mixed process (diffusion + charge transfer) with increasing temperature.  相似文献   

4.
The stereoselective hydrogenation of 2-hexyne in ethanol on Cu/-Al2O3 catalysts (1–40 % Cu) at 4–10 atm and 80–120 °C has been studied. The reaction affordscis-2-hexene as the only reaction product in 100 % yield at [Cu] 30 %. For samples with 20 % Cu, hydrogenation proceeds in parallel with absorption of H2 by the catalyst.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1314–1315, July, 1993.  相似文献   

5.
The structural characterization, thermogravimetric analysis and electrical properties for solid solution system, (Ba1–xLax)2In2O5+x with perovskite-type structure were investigated. X-ray diffraction showed that the orthorhombic phase was in the range of 0.0<x0.3, the tetragonal phase 0.3<x0.5, and the cubic phase 0.5<x. The sharp transition of electrical conductivity shifted to a lower temperature with increasing x and disappeared at the phase boundary between the orthorhombic and tetragonal phases. This perovskite-related oxide exhibited a pure oxide-ion conduction over the oxygen partial pressure range of 1 atm to 10–3.5 atm, and the electrical conductivity reached the value of 1.610–1 (S cm–1) at 1073 K, which was nearly equal to that of the yttria stabilized zirconia. These properties were successfully explained in terms of disordered oxygen ions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
Investigations in the system Sb-Se-NaOH-H2O, hydrothermal conditions, yielded crystals of the compound Na3SbSe3·3Sb2O3·0,5Sb(OH)3. The structure of this compound (a=14.40 Å,c=5.568 Å; space group P 63-C 6 6 ;Z=2) was determined from 985 independent X-ray intensities — collected on an automaticWeissenberg type diffractometer — by thePatterson method and refined by the least squares method toR=8.3% (with -weighting 5.9%). The structure consists of SbO3 pyramids which are connected via common oxygen corners to tubes parallel [001]. These tubes and SbSe3 pyramids are combined by Na atoms to a framework. The Sb(OH)3 groups are statistically located within the channels of the tubes.
  相似文献   

7.
Summary The new synthetic compound ZnFe 2 3+ (SeO3)4 forms at low-hydrothermal conditions at 220 °C. It belongs to the monoclinic system; the structure was determined by single-crystal X-ray diffraction in the space group Pc. The unit cell data are:a=8.196(4) Å,b=7.997(4) Å,c=8.033(4) Å, =92.27(3)°,V=526.1 Å3;Z=2. The structure of ZnFe 2 3+ (SeO3)4 contains two types of FeO6 octahedra, one distorted ZnO5 trigonal bipyramid, and four selenite groups. Formal clusters consisting of the ZnO5 group, edge-linked with both FeO6 groups and one SeO3 pyramid, are connected by common corners, involving three further selenite groups to a framework structure.
Die Kristallstruktur von ZnFe 2 3+ (SeO3)4
Zusammenfassung Die neue synthetische Verbindung ZnFe 2 3+ (SeO3)4 bildet sich bei niedrighydrothermalen Bedingungen (220°C). Die Kristallstruktur wurde mit Einkristallröntgenmethoden in der monoklinen Raumgruppe Pc gelöst. Die Zellparameter sind:a=8.196(4) Å,b=7.997(4) Å,c=8.033(4) Å, =92.27(3)°,V=526.1 Å3;Z=2. Die Kristallstruktur von ZnFe 2 3+ (SeO3)4 weist zwei Arten von FeO6-Oktaedern, eine verzerrte trigonale ZnO5-Dipyramide sowie vier Selenitgruppen auf. Formal können Cluster, bestehend aus dem ZnO5-Polyeder, kantenverknüpft mit den beiden FeO6-Gruppen sowie einer SeO3-Pyramide, beschrieben werden. Die Verknüpfung über Ecken zu einer Gerüststruktur erfolgt unter Beteiligung von drei weiteren Selenitgruppen.
  相似文献   

8.
Electron cyclotron resonance (ECR) BCl3 discharges with additional rf biasing of the sample position have been used to etch a variety of III–V semiconductors. GaAs and AlxGa1–xAs (x = 0–1) etch at equal rates in BCl3 or BCl3/Ar discharges, whereas SF6 addition produces high selectivities for etching GaAs over AlGaAs. These selectivities are in excess of 600 for dc biases of –150 V, and fall to 6 for biases of –300 V. If the dc biases are kept to – 100 V, there is no measurable degradation of the optical properties of the GaAs and AlGaAs. The AlF3 formed on the AlGaAs surface during exposure to BCl3/SF6 plasmas can be removed by sequential rinsing in dilute NH4OH and water. In-based materials (InP, InAs, InSb, InGaAs) etch at slow rates with relatively rough morphologies in BCl3 plasmas.  相似文献   

9.
荧光材料基质的结构调制对于调控发光材料的发光性能,探索固体结构-性能关系具有重要的研究意义。本文以Y2SiO5基质为模型,分别利用Si/Al和Si/P取代,以[AlO4]和[PO4]四面体替换[SiO4]四面体,设计合成了一系列组成为Y1.95Si1-xAlxO5-xFx∶0.05Ce3+(x=0.05,x=0.1,x=0.2,x=0.4,x=1)和Y1.95-yCaySi1-yPyO5∶0.05Ce3+(y=0,y=0.02,y=0.04,y=0.06,y=0.08,y=0.2)的荧光材料。结合X射线衍射、荧光光谱、荧光寿命等测试手段对其进行了表征分析。结果表明,在x≤0.2,y≤0.04时得到的产物能够保持Y2SiO5的结构特征,在一定的基质组成替换范围内,设计合成的样品Y1.95Si1-xAlxO5-xFx∶0.05Ce3+、Y1.95-yCaySi1-yPyO5∶0.05Ce3+能提高发光强度,发射光谱呈现蓝移现象。荧光寿命测试表明这两个系列的化合物中Ce3+所处的基质环境变化较小,Ce3+发光也未产生较大的变化。  相似文献   

10.
Products of hydrothermal treatment of the initial amorphous system MnxFe2–2x(OH)6–4x for 0x1 in 0.1x intervals, and products of their further thermal treatment, were examined by chemical analysis, X-ray, IR, and DTA techniques supported by magnetic measurements. After hydrothermal growth for lowx, hematite and goethite phases occurred. Although the goethite phase was still identifiable atx=0.6, formation of a solid solution with the isostructural groutite was not found. The ferrimagnetic spinel phase, which resists heating up to 400C, was present at 0.5x0.9. At higher temperatures, it transformed into the rhombohedral hematite type phase or into the cubic bixbyite phase. AtT900C, a ferrimagnetic spinel structure reappeared up tox=0.8. For x=0.9, the low- and high-temperature forms of the hausmannite phase occurred, forx= 1 passing from one form into another through Mn5O8 and partritgeite.For a primary mixture Mn0.5Fe(OH)4, corresponding to the manganese ferrite structure, the lattice parameter of which passes from 8.43 å through 8.33 å to 8.50 å, the probable crystallochemical formula was suggested.We are grateful to KBN (The State Committee for Scientific Research, Poland) for grant No. 3 T09A 064 08, which contributed substantially to the materialization of this project.  相似文献   

11.
The paper reviews published data on the structure and composition of two large classes of inorganic polymer fluorocarbon materials (IP FCMs), including hightemperature (HT) and lowtemperature (LT) modifications of graphite fluorides and fluorographitelike compounds CF x (x = 0.5 – 1.12$) and CF1+y (y = 0.08 – 1.33$) and intercalated fluorographite compounds (IFGCs) based on C x F (x < 2) matrices. According to Xray diffraction data, C1s and F1s Xray photoelectron spectroscopy (XPS), 13C and 19F NMR, CK and FK Xray spectroscopy, and IR and Raman spectroscopy, as well as MNDO calculations, the structure of monolayers and the properties of IP FCMs of C2F – CF1+y composition depend on the combination of C(sp 3) – F fragments bonded to the sp 2 fragments of the starting carbon matrices. The structure of hightemperature CF1+y is specified by the presence of structurally isolated external and internal C(sp 3)F2 groups located on the boundaries of C(sp 3) – F skeleton monolayers and in the holes of their nanostructures, respectively. The enthalpy of formation of HT FCMs does not depend on the type of starting carbon material and is linearly proportional to the F/C atomic ratio; C(sp 3)F and C(sp 3)F2 groups are chemically indistinguishable in HT FCMs. Six models for the structure of C2F and C4F monolayers in LT FCMs are considered. The best agreement with spectroscopy and MNDO data is obtained using modified Yudanov–Gornostaev's model for C2F, in which alternating rows of graphitelike sp 2 carbon fragments coexist with rows of bonded perfluorocyclohexane sp 3 cells. For lowtemperature C24F–C2F, electric conductivity and C1s and F1s XPS data are generalized and composition–property diagrams are constructed. In this case, the conductivity, C1s and F1s XPS, and the interplanar distances in monolayers are explained using the concept of planarity of C x F monolayers and the ensuing ideas of semiionic and semicovalent C=F bonds. For C4F · yA–C2F · zA compositions, 13C and 19F NMR data, C1s and F1s XPS, and IR data are accounted for by the predominant sp 3 nature of the structureforming C=F bonds.  相似文献   

12.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

13.
Reactions in an Al(OBus)3-(COOH)2 (OA)-tetrahydrofuran (THF)/(CD3)2SO (DMSO-d6) system (Al(OBus)3: THF : DMSO-d6: OA = 1 : 5 : 5 : x, x = 0.01 –3) were studied, without the addition of water and the process was monitored by NMR. When x 0.3, homogeneous solutions were obtained, whereas white precipitates formed with x 0.7. The formation of sec-butyl alcohol was evident with x 0.6, indicating that oxalate groups coordinate to aluminum to release sec-butyl alcohol. 13C NMR spectra of the solutions after 1 day suggest the presence of polymeric species if 0.03 x 0.6. The addition of a small amount of water resulted in the formation of a white precipitate (Al(OBus)3: THF : DMSO-d6 : OA : H2O = 1 : 5 : 5 : 0.3 : y,y = 0.03–0.3), indicating that water, possibly formed by esterification in the Al(OBus)3-OA-THF/DMSO-d6 system, does not take a major role in the present system.  相似文献   

14.
A novel sol–gel process has been successfully developed for preparing strontium bismuth tantalate (SrBi2Ta2O9, known as SBT) with ethylene alcohol as a solvent and acetic acid as a catalyst. The size of phase-pure SBT nanoparticles could be 4 nm in diameter by avoiding the formation of the fluorite phase at the low temperatures (550–600C). The behavior of the crystallization in SBT is investigated by XRD, TG-DTA, FT-IR and TEM. The nanoparticle size as a function of the annealing temperature is also investigated. By fitting the Arrhenius curve, we obtain the crystalline and vitreous growth activation energies, i.e, Ea1 = 0.709 eV and Ea2 = 0.093 eV. The two other fitting parameters, transition temperature T0 = 814 K (541C) and transition width = 0.022, directly show the behavior of the phase transition from vitreous phase to crystalline phase.  相似文献   

15.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

16.
In the system U–La–N a new phase of composition La2U2N5 was observed. The differaction pattern of this phase can be indexed with a tetragonal unit cell:a=8.43 Å,c=8.50 Å andc/a=1.008. The pseudocubic sub-cell withaca/2 is closely related to the CsCl-type.
Auszug aus der von der Technisch-Naturwissenschaftlichen Fakuktät der TU Wien approbierten Diplomarbait des Herrn Dipl.-Ing.J. Waldhart.  相似文献   

17.
Specimens of the system GeS x Se1–x were examined by means of X-ray and differential thermal analysis for 0x1. The activation energy of the specimens was calculated according to a semi-empirical method on the basis of the known thermodynamic parameters of the components.
  相似文献   

18.
The stability constants, 1, of each monochloride complex of Nd(III) and Tm(III) have been determined in the mixed system of methanol and water with 1.0 mol·dm–1 ionic strength using a solvent extraction technique. The values of 1 of Nd(III) and Tm(III) increase as the mole fraction of methanol in the mixed solvent system (X s) increases. However, the variation mode of 1 againstX s in the region of 0.00X s0.40 differs from each other, a concave curve for the Nd(III) and a convex curve for the Tm(III). The LnCl2+ formed is present as a solvent-shared ion-pair. Since Cl is a structure breaking ion, it was assumed that the primary solvation sphere of Ln3+ directly contacted with Cl. Calculation of Ln3+–Cl distance using Bom-type equation revealed the followings: (1) for Tm3+ with coordination number 8, the estimated distance between Tm3+ and Cl increases linearly withX s in 0.00X s0.40. The results mean an increase of the primary solvation sphere size of Tm3+ withX s. (2) For Nd3+, the distance between Nd3+ and Cl decreases linearly withX s in 0.00X s<0.13, where both coordination numbers of 9 and 8 coexist, while it increases withX s in 0.13<X s0.40. The results mean a decrease of the primary solvation-sphere size of Nd3+ withX s in 0.00X s<0.13 and an increase of that withX s in 0.13<X s0.40.  相似文献   

19.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

20.
Syntheses within the system CuO-SeO2-H2O revealed four copper(II)-oxo-selenites. The crystal structures of these compounds were determined by single crystal X-ray techniques. Chemical formulae, lattice parameters and space groups are: Cu2O(SeO3)-I [a=8.925 (1) Å, P213], Cu2O(SeO3)-II [a=6.987 (5) Å,b=5.953 (4) Å,c=8.429 (6) Å, =92.17 (3)°, P21/n], Cu4O(SeO3)3-I [a=15.990 (8) Å,b=13.518 (8) Å,c=17.745 (12) Å, =90.49 (5)°, P21/a], and Cu4O(SeO3)3-II [a=7.992 (6) Å,b=8.141 (6) Å,c=8.391 (6) Å, =77.34 (3)°, =65.56 (3)°, =81.36 (3)°, ].All the Cu atoms are-with one exception-[4], [4+1], and [4+2] coordinated by O atoms. The four nearest O atoms are more or less distorted square planar arranged. Within the CuO4 squares the Cu-O bond lengths are significantly shorter for the [4] coordinated O atoms as compared with those of the [4+1] and [4+2] coordinated Cu atoms. The exception in the coordination of the Cu atoms is the Cu(1) atom in Cu2O(SeO3)-I with the site symmetry 3, which is trigonal dipyramidal [5] coordinated. A common feature of these four crystal structures is, that O atoms outside the SeO3 groups are tetrahedrally coordinated by four Cu(II) atoms. The Se atoms are as usual [3] coordinated, building up SeO3 pyramids. In all these four compounds the copper-oxygen polyhedra are combined to a three-dimensional network.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号