首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. But to go further, we need at least to know the proteome size, or how many different protein species compose this proteome. This is the task that could be at least partially realized by the method described in this article. The approach used in our study is based on detection of protein spots in 2DE after staining by protein dyes with various sensitivities. As the different protein spots contain different protein species, counting the spots opens a way for estimation of number of protein species. The function representing the dependence of the number of protein spots on sensitivity or LOD of protein dyes was generated. And extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) allowed to counting the number of different molecules (polypeptide species) at the concentration level of a single polypeptide per proteome. Using this approach, it was estimated that the minimal numbers of protein species for model objects, Escherichia coli and Pirococcus furiosus, are 6200 and 3400, respectively. We expect a single human cell (HepG2) to contain minimum 70 000 protein species.  相似文献   

2.
Two different commercial kits for sodium dodecyl sulfate capillary electrophoresis (SDS-CE) were evaluated for the detection of the presence of soya protein in milk powder. The results obtained showed that SDS-CE allowed the separation of the basic subunits of glycinin and the alpha and alpha' subunits of beta-conglycinin from the main milk protein peaks. However, a detection limit lower than 10% (w/w) of soya protein in total protein could not be achieved. The use of a tetraborate-EDTA sample treatment minimized interferences from milk proteins, allowing the detection of at least 1% (w/w) of soya protein in total protein. The addition of soya protein hydrolysates could not be determined using SDS-CE.  相似文献   

3.
Ultrasensitive assays for proteins   总被引:2,自引:0,他引:2  
Zhang H  Zhao Q  Li XF  Le XC 《The Analyst》2007,132(8):724-737
Proteins are essential components of organisms and are involved in a wide range of biological functions. There are increasing demands for ultra-sensitive protein detection, because many important protein biomarkers are present at ultra-low levels, especially during the early stages of disease. Measuring proteins at low levels is also crucial for investigations of the protein synthesis and functions in biological systems. In this review, we summarize the recent developments of novel technology enabling ultrasensitive protein detection. We focus on two groups of techniques that involve either polymerase amplification of affinity DNA probes or signal amplification by the use of nano-/micro-materials. The polymerase-based amplification of affinity DNA probes indirectly improves the sensitivity of protein detection by increasing the number of detection molecules. The use of nano-/micro-materials conjugated to affinity probes enhances the measurement signals by using the unique electrical, optical, and catalytic properties of these novel materials. This review describes the basic principles, performances, applications, merits, and limitations of these techniques.  相似文献   

4.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

5.
A surface plasmon resonance (SPR)-based biosensor was developed for simple diagnosis of severe acute respiratory syndrome (SARS) using a protein created by genetically fusing gold binding polypeptides (GBPs) to a SARS coronaviral surface antigen (SCVme). The GBP domain of the fusion protein serves as an anchoring component onto the gold surface, exploiting the gold binding affinity of the domain, whereas the SCVme domain is a recognition element for anti-SCVme antibody, the target analyte in this study. SPR analysis indicated the fusion protein simply and strongly self-immobilized onto the gold surface, through GBP, without surface chemical modification, offering a stable and specific sensing platform for anti-SCVme detection. AFM and SPR imaging analyses demonstrated that anti-SCVme specifically bound to the fusion protein immobilized onto the gold-micropatterned chip, implying that appropriate orientation of bound fusion protein by GBP resulted in optimal exposure of the SCVme domain to the assay solution, resulting in efficient capture of anti-SCVme antibody. The best packing density of the fusion protein onto the SPR chip was achieved at the concentration of 10 μg mL−1; this density showed the highest detection response (906 RU) for anti-SCVme. The fusion protein-coated SPR chip at the best packing density had a lower limit of detection of 200 ng mL−1 anti-SCVme within 10 min and also allowed selective detection of anti-SCVme with significantly low responses for non-specific mouse IgG at all tested concentrations. The fusion protein provides a simple and effective method for construction of SPR sensing platforms permitting sensitive and selective detection of anti-SCVme antibody.  相似文献   

6.
Affinity probe capillary isoelectric focusing (CIEF) with laser-induced fluorescence was explored for detection of Ras-like G proteins. In the assay, a fluorescent BODIPY FL GTP analogue (BGTPgammaS) and G protein were incubated resulting in formation of BGTPgammaS-G protein complex. Excess BGTPgammaS was separated from BGTPgammaS-G protein complex by CIEF using a 3-10 pH gradient and detected in whole-column imaging mode. In other cases, a single point detector was used to detect zones during the focusing step of CIEF using a 2.5-5 pH gradient. In this case, analyte peaks passed the detector in approximately 5 min at an electric field of 350 V/cm. Detection during focusing allowed for more reproducible assays at shorter times but with a sacrifice in sensitivity compared to detection during mobilization. Resolution was adequate to separate BGTPgammaS-Ras and BGTPgammaS-Rab3A complexes. Formation of specific complexes was confirmed by adding GTPgammaS to samples containing BGTPgammaS-G protein. GTPgammaS competed with BGTPgammaS for G protein binding sites resulting in decreased BGTPgammaS-G protein peak heights. The concentrating effect of CIEF enabled detection limits of 30 pM.  相似文献   

7.
The detection of protein/small molecule interactions plays important roles in drug discovery and protein/metabolite interactions in biology. In this work, by coupling the terminal protection of small molecule-linked ssDNA strategy with the unmodified and positively charged gold nanoparticle ((+)AuNP) nanoprobes, we have developed a sensitive and simple colorimetric sensor for the detection of folate receptor, a highly expressed protein in many kinds of malignant tumors. The target folate receptor binds the folate moieties of the folate-linked ssDNA through high affinity interactions and protects the protein-bound ssDNA from digestion by exonuclease I. The protected ssDNA thus adsorbs the ((+)AuNP) through electrostatic interactions, leading to a red-to-blue color change of the sensing solution for sensitive colorimetric detection of folate receptor at the sub-nanomolar level. Besides, this colorimetric sensor shows high selectivity toward folate receptor against other control proteins. The developed sensor avoids the modification/conjugation of the AuNP nanoprobes and the involvement of any expensive instruments for signal transduction in protein detection. Featured with these obvious advantages, the colorimetric sensor strategy demonstrated herein can be easily expanded for sensitive and convenient detection of various protein/small molecule interactions.  相似文献   

8.
Vestergaard M  Kerman K  Kim DK  Ha MH  Tamiya E 《Talanta》2008,74(4):1038-1042
In this study, we present the detection of tau protein, at room temperature, using a multi-spot localised surface plasmon resonance (LSPR)-based immunochip. To the best of our knowledge, this is the first report of an immunochip for tau protein. The detection method includes fabrication of a gold-capped nanoparticle LSPR chip, formation and functionalisation of a self-assembled monolayer (SAM), immobilisation of a suitable linker, effective blocking of non-specific adsorption, immobilisation of a monoclonal anti-tau antibody (tau-mAb), and finally, the optimum conditions for the immuno-reaction between tau-mAb and the antigen were determined. The method has a high performance, enables detection of tau at 10pg/mL, lower than the cut-off value of 195pg/mL (for AD) for tau protein in cerebral spinal fluid (CSF). Further, we demonstrated selectivity of the technique by showing that the introduction of bovine serum albumin (BSA), perhaps the most abundant protein component in serum and CSF, does not interfere with the detection of tau. This method also offers a potential platform for studying tau interactions with other proteins and/or potential drug candidates and could also be easily adapted for detecting phosphorylated tau and other AD biomarkers.  相似文献   

9.
Zhang D  Vangala K  Li S  Yanney M  Xia H  Zou S  Sygula A 《The Analyst》2011,136(3):520-526
Dye conjugation is a common strategy improving the surface enhanced Raman detection sensitivity of biomolecules. Reported is a proof-of-concept study of a novel surface enhanced Raman spectroscopic tagging strategy termed as acid-cleavable SERS tag (ACST) method. Using Rhodamine B as the starting material, we prepared the first ACST prototype that consisted of, from the distal end, a SERS tag moiety (STM), an acid-cleavable linker, and a protein reactive moiety. Complete acid cleavage of the ACST tags was achieved at a very mild condition that is 1.5% trifluoroacetic acid (TFA) aqueous solution at room temperature. SERS detection of this ACST tagged protein was demonstrated using bovine serum albumin (BSA) as the model protein. While the SERS spectrum of intact ACST-BSA was entirely dominated by the fluorescent signal of STM, quality SERS spectra can be readily obtained with the acid cleaved ACST-BSA conjugates. Separation of the acid cleaved STM from protein further enhances the SERS sensitivity. Current SERS detection sensitivity, achieved with the acid cleaved ACST-BSA conjugate is ~5 nM in terms of the BSA concentration and ~1.5 nM in ACST content. The dynamic range of the cleaved ACST-BSA conjugate spans four orders of magnitudes from ~10 nM to ~100 μM in protein concentrations. Further improvement in the SERS sensitivity can be achieved with resonance Raman acquisition. This cleavable tagging strategy may also be used for elimination of protein interference in fluorescence based biomolecule detection.  相似文献   

10.
Electrochemical analysis of cobalt(III) protoporphyrin IX (CoP), synthesis and characterization of CoP nanoparticles, and signal amplification for biosensor development is presented. CoP was self-assembled into nanoparticles and then released to produce over 1000 electrochemically-detectable molecules for each protein target of interest, in this case monoclonal rabbit antibody. Anodic stripping voltammetry was utilized for quantitative and sensitive detection of CoP which correlated to target protein concentration. The CoP limit of detection was 4 nM and target protein was detected at 100 pM. This combination of nanoparticle and electrochemical signal amplification could allow for sensitive, inexpensive, and portable detection of protein biomarkers.  相似文献   

11.
This study examined the ability of a real-time dual-color detection system to allow direct observations of the kinetics of temperature-dependent protein-protein interaction at a single-molecule level. The primary target protein was an Alexa Fluor® 488-labeled actin conjugate, which had been pre-incubated with an unlabeled rabbit anti-actin antibody (IgG). The complementary fluorescent protein was Alexa Fluor® 633-labeled goat anti-rabbit IgG antibody, which interacts with the rabbit anti-actin antibody (IgG) bound to the Alexa Fluor® 488-labeled actin conjugate. The individual protein molecules labeled with different fluorescent dyes in solution were effectively focused, interacted with the other protein molecules at 500 aM, and detected directly in real-time using the dual-wavelength (λex = 488 and 635 nm) laser-induced fluorescence detection system. The kinetics of the protein-protein interactions were examined at different temperatures (12-32 °C). At concentrations in the aM range, the number of bound complex molecules through the protein-protein interaction decreased gradually with time at a given temperature, and increased with decreasing temperature at a set time. A high concentration (above 500 pM) of the protein sample caused aggregation and nonspecific binding of the protein molecules, even though the protein molecules were not an example of complementary binding. The results demonstrated that the real-time kinetics of a protein-protein interaction could be analyzed effectively at the single-molecule level without any time delay using the real-time dual-color detection system.  相似文献   

12.
Single cell analytics for proteomic analysis is considered a key method in the framework of systems nanobiology which allows a novel proteomics without being subjected to ensemble-averaging, cell-cycle, or cell-population effects. We are currently developing a single cell analytical method for protein fingerprinting combining a structured microfluidic device with latest optical laser technology for single cell manipulation (trapping and steering), free-solution electrophoretical protein separation, and (label-free) protein detection. In this paper we report on first results of this novel analytical device focusing on three main issues. First, single biological cells were trapped, injected, steered, and deposited by means of optical tweezers in a poly(dimethylsiloxane) microfluidic device and consecutively lysed with SDS at a predefined position. Second, separation and detection of fluorescent dyes, amino acids, and proteins were achieved with LIF detection in the visible (VIS) (488 nm) as well as in the deep UV (266 nm) spectral range for label-free, native protein detection. Minute concentrations of 100 fM injected fluorescein could be detected in the VIS and a first protein separation and label-free detection could be achieved in the UV spectral range. Third, first analytical experiments with single Sf9 insect cells (Spodoptera frugiperda) in a tailored microfluidic device exhibiting distinct electropherograms of a green fluorescent protein-construct proved the validity of the concept. Thus, the presented microfluidic concept allows novel and fascinating single cell experiments for systems nanobiology in the future.  相似文献   

13.
Here we describe the application of a recently developed high-resolution microcantilever biosensor resonating at the air-liquid interface for the continuous detection of antigen-antibody and enzyme-substrate interactions. The cantilever at the air-liquid interface demonstrated 50% higher quality factor and a 5.7-fold increase in signal-to-noise-ratio (SNR) compared with one immersed in the purified water. First, a label-free detection of a low molecular weight protein (insulin, 5.8 kDa) in physiological concentration was demonstrated. The liquid facing side of the cantilever was functionalized by coating its surface with insulin antibodies, while the opposite side was exposed to air. The meniscus membrane at the micro-slit around the cantilever sustained the liquid in the microchannel. After optimizing the process of surface functionalization, the resonance frequency shift was successfully measured for insulin solutions of 0.4, 2.0, and 6.3 ng ml(-1). To demonstrate additional application of the device for monitoring enzymatic protein degradation, the liquid facing microcantilever surface was coated with human recombinant SOD1 (superoxide dismutase 1) and exposed to various concentrations of proteinase K solution, and the kinetics of the SOD1 digestion was continuously monitored. The results showed that it is a suitable tool for sensitive protein detection and analysis.  相似文献   

14.
Sample preparation methods used for genetically modified organisms (GMOs) analysis are often time consuming, require extensive manual manipulation, and result in limited amounts of purified protein, which may complicate the detection of low‐abundance GM protein. A robust sample pretreatment method prior to mass spectrometry (MS) detection of the transgenic protein (5‐enolpyruvylshikimate‐3‐phosphate synthase [CP4 EPSPS]) present in Roundup Ready soya is investigated. Liquid chromatography‐multiple reaction monitoring tandem MS (nano LC‐MS/MS‐MRM) was used for the detection and quantification of CP4 EPSPS. Gold nanoparticles (AuNPs) and concanavalin A (Con A)‐immobilized Sepharose 4B were used as selective probes for the separation of the major storage proteins in soybeans. AuNPs that enable the capture of cysteine‐containing proteins were used to reduce the complexity of the crude extract of GM soya. Con A‐sepharose was used for the affinity capture of β‐conglycinin and other glycoproteins of soya prior to enzymatic digestion. The methods enabled the detection of unique peptides of CP4 EPSPS at a level as low as 0.5% of GM soya in MRM mode. Stable‐isotope dimethyl labeling was further applied to the quantification of GM soya. Both probes exhibited high selectivity and efficiency for the affinity capture of storage proteins, leading to the quantitative detection at 0.5% GM soya, which is a level below the current European Union's threshold for food labeling. The square correlation coefficients were greater than 0.99. The approach for sample preparation is very simple without the need for time‐consuming protein prefractionation or separation procedures and thus presents a significant improvement over existing methods for the analysis of the GM soya protein.  相似文献   

15.
Multiplex detection of protein post-translational modifications (PTMs), especially at point-of-care, is of great significance in cancer diagnosis. Herein, we report a machine learning-assisted photonic crystal hydrogel (PCH) sensor for multiplex detection of PTMs. With closely-related PCH sensors microfabricated on a single chip, our design achieved not only rapid screening of PTMs at specific protein sites by using only naked eyes/cellphone, but also the feasibility of real-time monitoring of phosphorylation reactions. By taking advantage of multiplex sensor chips and a neural network algorithm, accurate prediction of PTMs by both their types and concentrations was enabled. This approach was ultimately used to detect and differentiate up/down regulation of different phosphorylation sites within the same protein in live mammalian cells. Our developed method thus holds potential for POC identification of various PTMs in early-stage diagnosis of protein-related diseases.  相似文献   

16.
Liqing Wang  Pingang He 《Talanta》2009,79(3):557-154
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.  相似文献   

17.
The influence of column residency times on the reversed-phase gradient elution behaviour of human and bovine growth hormones has been investigated using on-line photodiode array spectroscopic detection. Stationary phase induced effects on protein conformation were monitored by changes in the maxima to minima ratio of the second derivative spectrum of the eluted protein. Significant changes in the second derivative ratio of the unmodified and the fully reduced and alkylated protein were observed following long incubation times, i.e. t(dwell) greater than 15 min, at the stationary phase surface in the presence of 0.1% trifluoroacetic acid before elution with a 0-75% aqueous acetonitrile gradient. The application of multi-wavelength detection in the study of equilibrium unfolding of growth hormones in urea by size-exclusion chromatography was also investigated. On-line photodiode array instrumentation and derivative spectra rationing was employed to monitor tertiary and quaternary structural changes associated with protein denaturation during a chromatographic separation. These studies clearly demonstrate the powerful detection capabilities of such instrumental approaches for the on-line evaluation of both stationary phase surface and/or mobile phase mediated changes in protein conformation.  相似文献   

18.
设计合成了一种发夹型核酸适体(Aptamer), 结合聚合酶反应建立了蛋白质荧光分析新方法. 该核酸适体同时作为蛋白质配体和聚合反应模板, 与靶蛋白特异结合后, 其构象发生了变化, 启动聚合反应, 从而在未直接标记核酸适体的情况下, 通过监测聚合反应进程来检测蛋白质的浓度. 采用该方法检测凝血酶的线性范围为0.5~8 nmol/L, 检测下限为0.5 nmol/L, 为蛋白质检测提供了一种简便快速的非直接标记的荧光分析方法, 有望在蛋白质组学的研究中得到广泛的应用.  相似文献   

19.
The SERS‐based detection of protein sequences with single‐residue sensitivity suffers from signal dominance of aromatic amino acid residues and backbones, impeding detection of non‐aromatic amino acid residues. Herein, we trap a gold nanoparticle in a plasmonic nanohole to generate a single SERS hot spot for single‐molecule detection of 2 similar polypeptides (vasopressin and oxytocin) and 10 distinct amino acids that constitute the 2 polypeptides. Significantly, both aromatic and non‐aromatic amino acids are detected and discriminated at the single‐molecule level either at individual amino acid molecules or within the polypeptide chains. Correlated with molecular dynamics simulations, our results suggest that the signal dominance due to large spatial occupancy of aromatic rings of the polypeptide sidechains on gold surfaces can be overcome by the high localization of the single hot spot. The superior spectral and spatial discriminative power of our approach can be applied to single‐protein analysis, fingerprinting, and sequencing.  相似文献   

20.
We report the use of a sheath flow reactor for post-column fluorescence derivatization of proteins. The derivatization reaction employed naphthalene-2,3-dicarboxaldehyde (NDA) and beta-mercaptoethanol, which were added in the sheath buffer. The labeled proteins were detected by laser-induced fluorescence with an argon-ion laser beam at 488 nm. The performance of this detection scheme was evaluated by separation of some protein standards. A column efficiency of 450,000 plates/m was obtained without stacking. The limits of detection for those standard proteins were determined to be from 8 to 32 nM. Excellent linear relationship was obtained with correlation coefficient of 0.9998 for alpha-lactalbumin concentration ranging from 3.91 x 10(-7) to 1.25 x 10(-5) M. Separation of protein standards at low pH was also demonstrated by reversing the electroosmotic flow (EOF) with addition of cetyltrimethylammonium bromide (CTAB) to the running buffer. Different separation selectivity was achieved, but the sensitivity is poorer than that at high pH. This post-column derivatization detection system was applied successfully to analyze the protein extract from HT29 human colon cancer cells as well as tryptic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号