首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylpalladium(II) carbene complexes of the type [Pd(NHC)Me(P-P)]BF(4) (NHC = N-heterocyclic carbene, P-P = chelating phosphine) have been synthesised, the complex [Pd(tmiy)Me(dcype)]BF(4) (tmiy = 1,3,4,5-tetramethylimidazol-2-ylidene, dcype = 1,2-bis(dicyclohexylphosphino)ethane) being characterised crystallographically. Complexes bearing the tmiy ligands were shown to decompose in an analogous manner to complexes bearing monodentate phosphine ligands, with the rate of decomposition being nominally linked to the size of the chelate ring. The decomposition of these complexes in the presence of aryl halides-expected to yield Pd(Ar)X(P-P)-was studied and shown instead to yield PdX(2)(P-P) and [Pd(tmiy)X(P-P)]BF(4). Additionally, Pd(Me)X(P-P) and Pd(Ar)X(P-P) were observed in some cases. Intermolecular cross-over reactions between the starting complex and Pd(Ar)X(P-P) were found to be the source of these unexpected products.  相似文献   

2.
The species Cy(2)PHC(6)F(4)BF(C(6)F(5))(2) reacts with Pt(PPh(3))(4) to yield the new product cis-(PPh(3))(2)PtH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 1 via oxidative addition of the P-H bond of the phosphonium borate to Pt(0). The corresponding reaction with Pd(PPh(3))(4) affords the Pd analogue of 1, namely, cis-(PPh(3))(2)PdH(Cy(2)PC(6)F(4)BF(C(6)F(5))(2)) 3; while modification of the phosphonium borate gave the salt [(PPh(3))(3)PtH][(tBu(2)PC(6)F(4)BF(C(6)F(5))(2))] 2. Alternatively initial deprotonation of the phosphonium borate gave [tBu(3)PH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 4, [SIMesH][Cy(2)PC(6)F(4)BF(C(6)F(5))(2)] 5 which reacted with NiCl(2)(DME) yielding [BaseH](2)[trans-Cl(2)Ni(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 6, SIMes 7) or with PdCl(2)(PhCN)(2) to give [BaseH](2)[trans-Cl(2)Pd(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))(2)] (Base = tBu(3)P 8, SIMes 9). While [C(10)H(6)N(2)(Me)(4)H][tBu(2)PC(6)F(4)BF(C(6)F(5))(2)] 10 was also prepared. A third strategy for formation of a metal complex of anionic phosphine-borate derivatives was demonstrated in the reaction of (COD)PtMe(2) with the neutral phosphine-borane Mes(2)PC(6)F(4)B(C(6)F(5))(2) affording (COD)PtMe(Mes(2)PC(6)F(4)BMe(C(6)F(5))(2)) 11. Extension of this reactivity to tBu(2)PH(CH(2))(4)OB(C(6)F(5))(3)) was demonstrated in the reaction with Pt(PPh(3))(4) which yielded cis-(PPh(3))(2)PtH(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)) 12, while the reaction of [SIMesH][tBu(2)P(CH(2))(4)OB(C(6)F(5))(3)] 13 with NiCl(2)(DME) and PdCl(2)(PhCN)(2) afforded the complexes [SIMesH](2)[trans-Cl(2)Ni(tBu(2)PC(4)H(8)OB(C(6)F(5))(3))(2)] 14 and [SIMesH](2)[trans-PdCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))(2)] 15, respectively, analogous to those prepared with 4 and 5. Finally, the reaction of 7 and 13with [(p-cymene)RuCl(2)](2) proceeds to give the new orange products [SIMesH][(p-cymene)RuCl(2)(Cy(2)PC(6)F(4)BF(C(6)F(5))(2))] 16 and [SIMesH][(p-cymene)RuCl(2)(tBu(2)P(CH(2))(4)OB(C(6)F(5))(3))] 17, respectively. Crystal structures of 1, 6, 10, 11, 12, and 16 are reported.  相似文献   

3.
The oxidative addition of 2-chloro-N-methylbenzimdazole to complexes of type [M(PPh(3))(4)] yields after N-protonation compounds with NH,NMe-substituted NHC ligands. For M = Pd complex compound trans-[3]BF(4) was obtained, while the oxidative addition for M = Pt yielded a mixture of cis-[4]BF(4) (major) and trans-[4]BF(4) (minor).  相似文献   

4.
The reaction of [NBu(4)](2)[(C(6)F(5))(2)Pt(μ-PPh(2))(2)Pd(μ-PPh(2))(2)Pt(C(6)F(5))(2)] (1a) with [AgPPh(3)](+) results in the oxidation of two bridging diphenylphosphanides to give the 46e species [(PPh(3))(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (3). Complex 3 displays two tetracoordinated terminal platinum centers and a central Pd atom that is bonded to three P atoms and that completes its coordination sphere by a rather long (3.237 ?) dative Pt(2) → Pd bond. Complex 3 is also obtained when [(R(F))(2)Pt(μ-PPh(2))Pd(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(R(F))(2)] (2) is reacted with PPh(3). Analogously, the addition of PPh(2)Et, CO or pyridine to 2 affords the 46e complexes of general formula [(L)(C(6)F(5))(2)Pt(2)(μ-P(2)Ph(2))Pd(μ-PPh(2))(μ-Ph(2)P(4)-P(3)Ph(2))Pt(1)(C(6)F(5))(2)] (L = PPh(2)Et, 4; L = CO, 6; L = pyridine, 7). The geometry around Pt(2) is determined by the bulkiness of L bonded to Pt. Thus, in complexes 3 (L = PPh(3)) and 4 (L = PPh(2)Et), the ligand L occupies the trans position with respect to μ-P(2), and in 6 (L = CO), the ligand L occupies the cis position with respect to μ-P(2). Interestingly, for 7 (L = py), both isomers 7-trans and 7-cis, could be isolated. Although 4 did not react with an excess of PPh(2)Et, the reaction with the less sterically demanding CH(3)CN ligand resulted in the opening of the Pt(2)-P(2)-Pd cycle with formation of the saturated 48e species [(PPh(2)Et)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (8). The saturated 48e complex [(CO)(C(6)F(5))(2)Pt(μ-PPh(2))Pd(MeCN)(μ-PPh(2))(μ-Ph(2)P-PPh(2))Pt(C(6)F(5))(2)] (9) was obtained by acetonitrile addition to 6. Beside the hindered rotation of the pentafluorophenyl groups and a flip-flop motion of the Pd-P-Pt(1)-P-P ring observed at low T, a rotation about the Pt(2)-P(2) bond and a P-C oxidative addition/reductive elimination process occur for 3 and 4 at room temperature. A "through-space" (19)F-(31)P spin-spin coupling between an ortho-F and the P(4) is observed for complexes 3 and 4, having the C(6)F(5) groups bonded to Pt(2) in mutually trans position. The XRD structures of complexes 3, 6, 7-trans, 7-cis, 8, and 9 are described.  相似文献   

5.
The eta(1)-borazine complexes trans-[(Cy(3)P)(2)M(Br)(Br(2)B(3)N(3)H(3))] (Cy = cyclohexyl) were prepared by oxidative addition of a B-Br bond of (BrBNH)(3) to [M(PCy(3))(2)] (M = Pd, Pt). Furthermore the platinum compound was converted into the T-shaped cationic complex trans-[(Cy(3)P)(2)Pt(Br(2)B(3)N(3)H(3))][BAr(f)(4)] [Ar(f) = 3,5-(CF(3))(2)C(6)H(3)] by addition of Na[BAr(f)(4)].  相似文献   

6.
Reaction of [Pt(PEt(3))(3)] with the primary and secondary phosphine-borane adducts PhRPH x BH(3) (R=H, Ph) resulted in oxidative addition of a P-H bond at the Pt(0) center to afford the complexes trans-[PtH(PPhR x BH(3))(PEt(3))(2)] (1: R=H; 2: R=Ph). The products 1 and 2 were characterized by (1)H, (11)B, (13)C, (31)P, and (195)Pt NMR spectroscopy, and the molecular structures were verified by X-ray crystallography. In both cases, a trans arrangement of the hydride ligand with respect to the phosphidoborane ligand was observed. When 2 was treated with PhPH(2) x BH(3), a novel phosphidoborane ligand-exchange reaction occurred which yielded 1 and Ph(2)PH x BH(3). Treatment of 2 with one equivalent of depe (depe=1,2-bis(diethylphosphino)ethane) resulted in the formation of the complex cis-[PtH(PPh(2) x BH(3))(depe)] (3), in which the hydride ligand and the phosphidoborane ligand are in a cis arrangement. Treatment of 3 with PhPH(2) x BH(3) was found to result in an exchange of the phosphidoborane ligands to give the complex cis-[PtH(PPhH x BH(3))(depe)] (4) and Ph(2)PH x BH(3). Complex 4 was found to undergo further reaction in the presence of PhPH(2) x BH(3) to give meso-cis-[Pt(PPhH x BH(3))(2)(depe)] (5) and rac-cis-[Pt(PPhH x BH(3))(2)(depe)] (6).  相似文献   

7.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

8.
The synthesis of platinum bisphosphine complexes of biphenyl- 2,2'-dichalcogenates and the oxides of dibenzo[1,2]dithiin and related ligand systems by oxidative addition to [Pt(PPh(3))(4)] is reported. We also describe the synthesis of a new compound, dibenzothiophen-4-yldiselenide and its simple platinum complex (obtained by oxidative addition). All complexes have been fully characterised, principally by using multinuclear NMR spectroscopy and in six cases by means of single-crystal X-ray diffraction studies. The majority are simple S/S or Se/Se complexes, however the addition of dibenzo[1,2]dithiin trioxide to [Pt(PPh(3))(4)] gives a bimetallic system, [Pt[2-[S(O)],2'-[S(O)(2)]-biphen}(PPh(3))](2), containing a central Pt(2)S(2)O(2) core in which the ligand behaves as a tridentate S,S,O donor.  相似文献   

9.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   

10.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

11.
The reaction of the neutral binuclear complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(phen)] (phen = 1,10-phenanthroline, R(F) = C(6)F(5); M = Pt, 1; M = Pd, 2) with AgClO(4) or [Ag(OClO(3))(PPh(3))] affords the trinuclear complexes [AgPt(2)(μ-PPh(2))(2)(R(F))(2)(phen)(OClO(3))] (7a) or [AgPtM(μ-PPh(2))(2)(R(F))(2)(phen)(PPh(3))][ClO(4)] (M = Pt, 8; M = Pd, 9), which display an "open-book" type structure and two (7a) or one (8, 9) Pt-Ag bonds. The neutral diphosphine complexes [(R(F))(2)Pt(μ-PPh(2))(2)M(P-P)] (P-P = 1,2-bis(diphenylphosphino)methane, dppm, M = Pt, 3; M = Pd, 4; P-P = 1,2-bis(diphenylphosphino)ethane, dppe, M = Pt, 5; M = Pd, 6) react with AgClO(4) or [Ag(OClO(3))(PPh(3))], and the nature of the resulting complexes is dependent on both M and the diphosphine. The dppm Pt-Pt complex 3 reacts with [Ag(OClO(3))(PPh(3))], affording a silver adduct 10 in which the Ag atom interacts with the Pt atoms, while the dppm Pt-Pd complex 4 reacts with [Ag(OClO(3))(PPh(3))], forming a 1:1 mixture of [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(dppm)] (11), in which the silver atom is connected to the Pt-Pd moiety through Pd-(μ-PPh(2))-Ag and Ag-P(k(1)-dppm) interactions, and [AgPdPt(μ-PPh(2))(2)(R(F))(2)(OClO(3))(PPh(3))(2)][ClO(4)] (12). The reaction of complex 4 with AgClO(4) gives the trinuclear derivative 11 as the only product. Complex 11 shows a dynamic process in solution in which the silver atom interacts alternatively with both Pd-μPPh(2) bonds. When P-P is dppe, both complexes 5 and 6 react with AgClO(4) or [Ag(OClO(3))(PPh(3))], forming the saturated complexes [(PPh(2)C(6)F(5))(R(F))Pt(μ-PPh(2))(μ-OH)M(dppe)][ClO(4)] (M = Pt, 13; Pd, 14), which are the result of an oxidation followed by a PPh(2)/C(6)F(5) reductive coupling. Finally, the oxidation of trinuclear derivatives [(R(F))(2)Pt(II)(μ-PPh(2))(2)Pt(II)(μ-PPh(2))(2)Pt(II)L(2)] (L(2) = phen, 15; L = PPh(3), 16) by AgClO(4) results in the formation of the unsaturated 46 VEC complexes [(R(F))(2)Pt(III)(μ-PPh(2))(2)Pt(III)(μ-PPh(2))(2)Pt(II)L(2)][ClO(4)](2) (17 and 18, respectively) which display Pt(III)-Pt(III) bonds.  相似文献   

12.
Treatment of L(2)MCl(2) (M = Pt, Pd; L(2) = Ph(2)PCMe(2)PPh(2) (dppip), Ph(2)PNMePPh(2) (dppma)) with AgX (X = OTf, BF(4), NO(3)) in wet CH(2)Cl(2) yields the dinuclear dihydroxo complexes [L(2)M(mu-OH)](2)(X)(2), the mononuclear aqua complexes [L(2)M(OH(2))(2)](X)(2), the mononuclear anion complexes L(2)MX(2), or mixtures of complexes. Addition of aromatic amines to these complexes or mixtures gives the dinuclear diamido complexes [L(2)Pt(mu-NHAr)](2)(BF(4))(2), the mononuclear amine complexes [L(2)M(NH(2)Ar)(2)](X)(2), or the dinuclear amido-hydroxo complex [Pt(2)(mu-OH)(mu-NHAr)(dppip)(2)](BF(4))(2). Deprotonation of the Pd and Pt amine or diamido complexes with M'N(SiMe(3))(2) (M' = Li, Na, K) gives the diimido complexes [L(2)M(mu-NAr)](2) associated with M' salts. Structural studies of the Li derivatives indicate association through coordination of the imido nitrogen atoms to Li(+). Deprotonation of the amido-hydroxo complex gives the imido-oxo complex [Pt(2)(mu-O)(mu-NAr)(dppip)(2)].LiBF(4).LiN(SiMe(3))(2), and deprotonation of the dppip Pt hydroxo complex gives the dioxo complex [Pt(mu-O)(dppip)](2).LiN(SiMe(3))(2).2LiBF(4).  相似文献   

13.
Kauf T  Braunstein P 《Inorganic chemistry》2011,50(22):11472-11480
The reaction of the functional, zwitterionic quinonoid molecule (6E)-4-(butylamino)-6-(butyliminio)-3-oxo-2-(1,1,2,2-tetracyanoethyl)cyclohexa-1,4-dien-1-olate, [C(6)H-2-{C(CN)(2)C(CN)(2)H}]-4,6-(···NH n-Bu)(2)-1,3(···O)(2) (2), which has been previously prepared by regioselective insertion of TCNE into the C-H bond adjacent to the C···O bonds of the zwitterionic benzoquinone monoimine (6E)-4-(butylamino)-6-(butyliminio)-3-oxocyclohexa-1,4-dien-1-olate, C(6)H(2)-4,6-(···NHn-Bu)(2)-1,3-(···O)(2) (1), with 2 equiv of [Pt(C(2)H(4))(PPh(3))(2)], afforded the Pt(0) complex [Pt(PPh(3))(2)(4)] (6) (4 = 2-HCN; (6E)-4-(butylamino)-6-(butyliminio)-3-oxo-2-(1,2,2-tricyanoethenyl)cyclohexa-1,4-dien-1-olate), in which a tricyanoethenyl moiety is π-bonded to the metal. A metal-induced HCN elimination reaction has thus taken place. The same complex was obtained directly by the reaction of 1 equiv of the Pt(0) complex [Pt(C(2)H(4))(PPh(3))(2)] with the olefinic ligand [C(6)H-2-{C(CN)═C(CN)(2)}]-4,6-(···NHn-Bu)(2)-1,3-(···O)(2)) (4), previously obtained by the reaction of 2 with NEt(3) in THF. A similar reactivity pattern was observed between 2 and 2 equiv of the Pd(0) precursor [Pd(dba)(2)] in the presence of dppe, which led to [Pd(dppe)(4)] (7), which was also directly obtained from 4 and 1 equiv [Pd(dba)(2)]/dppe. In contrast to the behavior of the TCNE derivative 2, the reaction of the TCNQ derivative (6E)-4-(butylamino)-6-(butyliminio)-2-(dicyano(4-(dicyanomethyl)phenyl)methyl)-3-oxocyclohexa-1,4-dien-1-olate, [C(6)H-2-{C(CN)(2)p-C(6)H(4)C(CN)(2)H}]-4,6-(···NHn-Bu)(2)-1,3-(···O)(2)) (3), with 2 equiv of [Pt(C(2)H(4))(PPh(3))(2)] led to formal oxidative-addition of the C-H bond of the C(CN)(2)H moiety to give the Pt(II) hydride complex trans-[PtH(PPh(3))(2){N═C═C(CN)p-C(6)H(4)C(CN)(2)-2-[C(6)H-4,6-(···NHn-Bu)(2)-1,3-(···O)(2))}] (8). The molecular structures of 3, 4, 6·0.5(H(2)O), and 8·3(CH(2)Cl(2)) have been determined by single-crystal X-ray diffraction.  相似文献   

14.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

15.
Homo- and heterobimetallic complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}] (in which (1,8-S(2)-nap)=naphtho-1,8-dithiolate and {ML(n)}={PtCl(2)} (1), {PtClMe} (2), {PtClPh} (3), {PtMe(2)} (4), {PtIMe(3)} (5) and {Mo(CO)(4)} (6)) were obtained by the addition of [PtCl(2)(NCPh)(2)], [PtClMe(cod)] (cod=1,5-cyclooctadiene), [PtClPh(cod)], [PtMe(2)(cod)], [{PtIMe(3)}(4)] and [Mo(CO)(4)(nbd)] (nbd=norbornadiene), respectively, to [Pt(PPh(3))(2)(1,8-S(2)-nap)]. Synthesis of cationic complexes was achieved by the addition of one or two equivalents of a halide abstractor, Ag[BF(4)] or Ag[ClO(4)], to [{Pt(mu-Cl)(mu-eta(2):eta(1)-C(3)H(5))}(4)], [{Pd(mu-Cl)(eta(3)-C(3)H(5))}(2)], [{IrCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)] (in which C(5)Me(5)=Cp*=1,2,3,4,5-pentamethylcyclopentadienyl), [{RhCl(mu-Cl)(eta(5)-C(5)Me(5))}(2)], [PtCl(2)(PMe(2)Ph)(2)] and [{Rh(mu-Cl)(cod)}(2)] to give the appropriate coordinatively unsaturated species that, upon treatment with [(PPh(3))(2)Pt(1,8-S(2)-nap)], gave complexes of the form [(PPh(3))(2)(mu(2)-1,8-S(2)-nap){ML(n)}][X] (in which {ML(n)}[X]={Pt(eta(3)-C(3)H(5))}[ClO(4)] (7), {Pd(eta(3)-C(3)H(5))}[ClO(4)] (8), {IrCl(eta(5)-C(5)Me(5))}[ClO(4)] (9), {RhCl(eta(5)-C(5)Me(5))}[BF(4)] (10), {Pt(PMe(2)Ph)(2)}[ClO(4)](2) (11), {Rh(cod)}[ClO(4)] (12); the carbonyl complex {Rh(CO)(2)}[ClO(4)] (13) was formed by bubbling gaseous CO through a solution of 12. In all cases the naphtho-1,8-dithiolate ligand acts as a bridge between two metal centres to give a four-membered PtMS(2) ring (M=transition metal). All compounds were characterised spectroscopically. The X-ray structures of 5, 6, 7, 8, 10 and 12 reveal a binuclear PtMS(2) core with PtM distances ranging from 2.9630(8)-3.438(1) A for 8 and 5, respectively. The napS(2) mean plane is tilted with respect to the PtP(2)S(2) coordination plane, with dihedral angles in the range 49.7-76.1 degrees and the degree of tilting being related to the PtM distance and the coordination number of M. The sum of the Pt(1)coordination plane/napS(2) angle, a, and the Pt(1)coordination plane/M(2)coordination plane angle, b, a+b, is close to 120 degrees in nearly all cases. This suggests that electronic effects play a significant role in these binuclear systems.  相似文献   

16.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

17.
The pentacoordinate [PtH{P(OEt)3}4]BF4 (1) hydride complex was prepared by allowing the tetrakis(phosphite) Pt{P(OEt)3}4 to react with HBF4.Et2O at -80 degrees C. Depending on the nature of the acid used, however, the protonation of the related Pt{PPh(OEt)2}4 complex yielded the pentacoordinate [PtH{PPh(OEt)2}4]BF4 (3) or the tetracoordinate [PtH{PPh(OEt)2}3]Y (4) [Y = BF4- (a), CF3SO3- (b), Cl- (c)] derivatives. Neutral PtHClP2 (7,8) [P = P(OEt)3, PPh(OEt)2] hydride complexes were prepared by allowing PtCl2P2 to react with NaBH4 in CH3CN. The tetrakis(phosphite)[Pt{P(OEt)3}4](BF4)2 (2) derivative was also synthesised and then characterised spectroscopically and by an X-ray crystal structure determination. Reactivity with aryldiazonium cations of all the hydrides was investigated and found to proceed only with the PtHClP2 complex to yield the aryldiazene [PtCl(ArN=NH)P2]BF4[P = PPh(OEt)2] derivative. The hydrazine [PtCl(NH2NH2){PPh(OEt)2}2]BPh4 complex was also prepared by allowing PtHClP2 to react first with AgCF3SO3 and then with hydrazine.  相似文献   

18.
New mixed-valence iron-nickel dithiolates are described that exhibit structures similar to those of mixed-valence diiron dithiolates. The interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)(3)]BF(4) ([1]BF(4), where dppe = Ph(2)PCH(2)CH(2)PPh(2) and pdt(2-) = -SCH(2)CH(2)CH(2)S-) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) incorporating L = PHCy(2) ([1a]BF(4)), PPh(NEt(2))(2) ([1b]BF(4)), P(NMe(2))(3) ([1c]BF(4)), P(i-Pr)(3) ([1d]BF(4)), and PCy(3) ([1e]BF(4)). The related precursor [(dcpe)Ni(pdt)Fe(CO)(3)]BF(4) ([2]BF(4), where dcpe = Cy(2)PCH(2)CH(2)PCy(2)) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = PPh(2)(2-pyridyl) ([2a]BF(4)), PPh(3) ([2b]BF(4)), and PCy(3) ([2c]BF(4)). For bulky and strongly basic monophosphorus ligands, the salts feature distorted coordination geometries at iron: crystallographic analyses of [1e]BF(4) and [2c]BF(4) showed that they adopt "rotated" Fe(I) centers, in which PCy(3) occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, members of the new class of complexes are described as Ni(II)Fe(I) (S = (1)/(2)) systems according to electron paramagnetic resonance spectroscopy, although with attenuated (31)P hyperfine interactions. Density functional theory calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e](+) is mostly localized in a Fe(I)-centered d(z(2)) orbital, orthogonal to the Fe-P bond. The PCy(3) complexes, rare examples of species featuring "rotated" Fe centers, both structurally and spectroscopically incorporate features from homobimetallic mixed-valence diiron dithiolates. Also, when the NiS(2)Fe core of the [NiFe]-hydrogenase active site is reproduced, the "hybrid models" incorporate key features of the two major classes of hydrogenase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)(2)L](+/2+). The resulting unsaturated 32e(-) dications represent the closest approach to modeling the highly electrophilic Ni-SI(a) state. In the case of L = PPh(2) (2-pyridyl), chelation of this ligand accompanies the second oxidation.  相似文献   

19.
Complexes [Pt(mu-N,S-8-TT)(PPh(3))(2)](2) (1), [Pt(mu-S,N-8-TT)(PTA)(2)](2) (2), [Pt(8-TTH)(terpy)]BF(4) (3), cis-[PtCl(8-MTT)(PPh(3))(2)] (4), cis-[Pt(8-MTT)(2)(PPh(3))(2)] (5), cis-[Pt(8-MTT)(8-TTH)(PPh(3))(2)] (6), cis-[PtCl(8-MTT)(PTA)(2)] (7), cis-[Pt(8-MTT)(2)(PTA)(2)] (8), and trans-[Pt(8-MTT)(2)(py)(2)] (9) (8-TTH(2) = 8-thiotheophylline; 8-MTTH = 8-(methylthio)theophylline; PTA = 1,3,5-triaza-7-phosphaadamantane) are presented and studied by IR and multinuclear ((1)H, (31)P[(1)H]) NMR spectroscopy. The solid-state structure of 4 and 9 has been authenticated by X-ray crystallography. Growth inhibition of the cancer cells T2 and SKOV3 induced by the above new thiopurine platinum complexes has been investigated. The activity shown by complexes 4 and 9 was comparable with cisplatin on T2. Remarkably, 4 and 9 displayed also a valuable activity on cisplatin-resistant SKOV3 cancer cells.  相似文献   

20.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号