首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

3.
C. Tegenkamp 《Surface science》2007,601(13):2641-2646
Four-point conductance measurements of a high temperature annealed monolayer of Pb on Si(5 5 7) are combined with tunneling microscopy (STM) and LEED for structural investigations. We found extremely high surface state conductance which becomes quasi-one-dimensional below a critical temperature of Tc = 78 K. The change from low to extremely high conductance anisotropy is associated with a reversible order-disorder phase transition with a temperature dependence ∝1/T + const. along the chains below the phase transition. Below the phase transition order is found simultaneously in the lateral separation between Pb chains and along the chains. There a 10-fold superperiodicity appears. We suggest that strong two-dimensional coupling, leading to electronic stabilization of terraces with a width of lattice constants, results in perfect nesting normal to the chains at EF (below Tc), which is the origin of this switching to one-dimensional behavior. Therefore, no metal-insulator transition is expected at low temperature.  相似文献   

4.
The v3 = 1 ← 0 (out-of-phase stretching vibration) transition wavenumbers of gas-phase NCO have been measured, in many cases with sub-Doppler resolution, by mid-infrared laser magnetic resonance (LMR) spectroscopy. In addition to the fundamental transition from the 2Π ground vibronic state, hot bands from the v2 = 1 2Σ and 2Δ and from the v2 = 2 2Φ vibronic states were detected and analyzed. The 2Σ vibronic level, with a spin-orbit coupling only partly quenched by the Renner-Teller effect, is characterised by complex and rapid tuning of energies in the magnetic field. This is the first successful analysis of magnetic resonance spectra for non-unique Renner-Teller vibronic states. The new LMR transitions were combined with data from previous studies and analysed, using an effective Hamiltonian in a 40-parameter fit to 660 transitions and combination differences. Several new coupling parameters are required, having magnitudes generally consistent with predictions from standard vibration-rotation theory.  相似文献   

5.
We demonstrate that TiOCl is a good model inorganic system to investigate spin-Peierls state. Our 35Cl and 47,49Ti NMR data show that a pseudo spin-gap behavior below T*=135 K precedes successive phase transitions at Tc=94 K and into a singlet spin-Peierls ground state with a large energy gap Eg/kB=430 K.  相似文献   

6.
We analyze the finite temperature behavior of the Sakai-Sugimoto model, which is a holographic dual of a theory which spontaneously breaks a U(Nf)L × U(Nf)R chiral flavor symmetry at zero temperature. The theory involved is a 4 + 1 dimensional supersymmetric SU(Nc) gauge theory compactified on a circle of radius R with anti-periodic boundary conditions for fermions, coupled to Nf left-handed quarks and Nf right-handed quarks which are localized at different points on the compact circle (separated by a distance L). In the supergravity limit which we analyze (corresponding in particular to the large Nc limit of the gauge theory), the theory undergoes a deconfinement phase transition at a temperature Td = 1/2πR. For quark separations obeying L > Lc ? 0.97 ∗ R the chiral symmetry is restored at this temperature, but for L < Lc ? 0.97 ∗ R there is an intermediate phase which is deconfined with broken chiral symmetry, and the chiral symmetry is restored at TχSB ? 0.154/L. All of these phase transitions are of first order.  相似文献   

7.
We study magnetotransport properties of graphite and rhombohedral bismuth samples and found that in both materials applied magnetic field induces the metal-insulator- (MIT) and reentrant insulator-metal-type (IMT) transformations. The corresponding transition boundaries plotted on the magnetic field-temperature (B − T) plane nearly coincide for these semimetals and can be best described by power laws T ∼ (B − Bc)κ, where Bc is a critical field at T = 0 and κ = 0.45 ± 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as signatures of quantum phase transitions associated with the M-I and I-M transformations.  相似文献   

8.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

9.
10.
The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7–423 K in polarized light in the spectral range 500–10 000 cm–1 with a resolution up to 0.1 cm–1. A new first-order structural phase transition close to the second-order transition is recorded at Tc = 360 K by the appearance of a new phonon mode at 976 cm–1. The reasons for considerable differences in Tc for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f–f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at TN = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at TSR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to TSR = 4.0 K.  相似文献   

11.
We have investigated the molecular motions of TRIS+ ([(CH2OH)3CNH3]+) and ions in the [(CH2OH)3CNH3]2SiF6 crystal below room temperature from the measurements of the spin-lattice relaxation time T1 and the NMR absorption line of 1H and 19F nuclei, in order to elucidate the changes of the molecular motions by the phase transition of Tc=178 K. The narrowing of the 19F-NMR line was observed around Tc=178 K and the reorientation of the anion appears above Tc. Moreover, from the analysis of the temperature dependence of T1, we have observed that the activation energy of the reorientational motion of ions changes from 0.168 eV (T>Tc) to 0.185 eV (T<Tc). Based on these results, we found that the reorientational motion of ions is closely related to the origin of the phase transition at Tc. In addition, from the measurement of the 1H-NMR line, we also found that the reorientational motion of H2 in the -CH2OH group becomes active accompanied by the phase transition.  相似文献   

12.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

13.
Magnetic properties and the magnetocaloric effect of the compound TbPdAl are investigated. The compound exhibits a weak antiferromagnetic (AFM) coupling, and undergoes two successive AFM transitions at TN=43 K and Tt=22 K. A field-induced metamagnetic transition from AFM to ferromagnetic (FM) state is observed below TN, and a small magnetic field can destroy the AFM structure of TbPdAl, inducing an FM-like state. The maximal value of magnetic entropy change is −11.4 J/kg K with a refrigerant capacity of 350 J/kg around TN for a field change of 0-5 T. Good magnetocaloric properties of TbPdAl result from the high saturation magnetization caused by the field-induced AFM-FM transition.  相似文献   

14.
15.
Using a narrow-band tunable XUV source, ultra-high resolution 1 XUV + 1 UV two-photon ionisation spectra were recorded of transitions to several singlet ungerade states in 14N2 and 15N2 in the range 106 000-109 000 cm−1. The natural linewidths of the individual rotational spectral lines were determined and the resulting lifetimes were found to depend on vibrational level and for the c31Πu (v = 1) level also on isotope. Furthermore, accurate transition frequencies were determined and for several bands, lines near bandhead regions were resolved for the first time.  相似文献   

16.
Heisenberg spin chains with ferromagnetic nearest-neighbor coupling and an easy axis of magnetisation are considered in the classical limit. The critical ratioa c between the anisotropy coefficient and the exchange integral for which the 180°-Blochtype soliton undergoes a phase transition to an Ising-type soliton is calculated by an exact analytical algorithm. For chains including 2N=4,6,8,... spins, one finds a sequencea c (2N) which converges rapidly to the valuea c()=2/3 (e.g.a c (12)=0.66664) marking the phase transition from a Bloch- to an Ising-structure of the soliton in an infinite chain.Dedicated to Professor Harry Thomas on the occasion of his 60th birthday  相似文献   

17.
The pure rotational spectrum of CHF2I has been recorded for the first time, in a supersonic expansion in the region 1.7-17 GHz, and at room-temperature in the region 302-318 GHz. The observed transitions span the values of J from 0 up to 67. Precise rotational and centrifugal distortion constants have been determined. Furthermore, the complete iodine nuclear electric quadrupole coupling tensor, in the inertial and principal axes, has been determined. Quantum chemical calculations have been performed to aid with the analysis. Iodine quadrupole mediated perturbations have resulted in the following observations: (i) several transitions having enhanced intensities and (ii) the observation of several forbidden, ΔJ=±2, transitions. Comparisons in electronic structure are made between the series of molecules CH3-nFnX; and X = Cl, Br, I.  相似文献   

18.
We investigate the effects of the antiferromagnetic exchange coupling between the Nickel and Bismuth2 atoms (Jint2 < 0) on the magnetizations of the NiBi-binary alloy versus temperature and external magnetic field by means of the effective field theory. We find that the magnetization of the Ni, Bi1, Bi2 and total NiBi-binary alloy has two different magnetic phase transitions for the Jint2 < 0. One of them is a first-order phase transition (FOPT) at Tt = 0.349 and the other is a second-order phase transition (SOPT) at Tc = 0.791. We also study the hysteresis behaviors and we find that the values of the coercive field points of the Bi2 are higher than those of the Ni and Bi1. Moreover, Ni, Bi1 and Bi2 components have ferromagnetic hysteresis behaviors whereas the total NiBi has type II superconducting behavior. Therefore, we suggest that ferromagnetism and superconductivity coexist in the NiBi-binary alloy that is qualitatively good agreement with the some experimental and theoretical works.  相似文献   

19.
20.
In this work we report the temperature dependence of the resistivity ρ of p-Cu2GeSe3 and manganese-doped p-Cu2GeSe3 at low temperature. It was found that for a intrinsic sample ρ obeys the Shklovskii-Efros-type variable-range hopping resistivity law in the temperature range from 4 to 63 K. This behaviour is governed by generation of a Coulomb gap Δ=78 meV in the density of localized states. We find a low activation term T0=0.24 K, which is an indication of a large localization length ξ. For Mn-doped sample a metal-insulator transition (MIT) is observed at T=65 K. On the basis of the Mott criterion for metal-insulator transition, the critical carrier density nc is determined. From the analysis of resistivity data it is concluded that Mn acts as acceptor impurity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号