首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
第四讲 量子对策论   总被引:1,自引:0,他引:1  
量子对策论是量子信息学的新兴分支,是经典对策论与量子信息学两门学科的交叉学科.由 于引入了量子力学中的量子叠加性和纠缠态,量子对策得出了与经典对策迥然不同的结果.  相似文献   

2.
M D Srinivas 《Pramana》1996,47(1):1-23
We present an overview of the quantum theory of continuous measurements and discuss some of its important applications in quantum optics. Quantum theory of continuous measurements is the appropriate generalization of the conventional formulation of quantum theory, which is adequate to deal with counting experiments where a detector monitors a system continuously over an interval of time and records the times of occurrence of a given type of event, such as the emission or arrival of a particle. We first discuss the classical theory of counting processes and indicate how one arrives at the celebrated photon counting formula of Mandel for classical optical fields. We then discuss the inadequacies of the so called quantum Mandel formula. We explain how the unphysical results that arise from the quantum Mandel formula are due to the fact that the formula is obtained on the basis of an erroneous identification of the coincidence probability densities associated with a continuous measurement situation. We then summarize the basic framework of the quantum theory of continuous measurements as developed by Davies. We explain how a complete characterization of the counting process can be achieved by specifying merely the measurement transformation associated with the change in the state of the system when a single event is observed in an infinitesimal interval of time. In order to illustrate the applications of the quantum theory of continuoius measurements in quantum optics, we first derive the photon counting probabilities of a single-mode free field and also of a single-mode field in interaction with an external source. We then discuss the general quantum counting formula of Chmara for a multi-mode electromagnetic field coupled to an external source. We explain how the Chmara counting formula is indeed the appropriate quantum generalization of the classical Mandel formula. To illustrate the fact that the quantum theory of continuous measurements has other diverse applications in quantum optics, besides the theory of photodetection, we summarize the theory of ‘quantum jumps’ developed by Zoller, Marte and Walls and Barchielli, where the continuous measurements framework is employed to evaluate the statistics of photon emission events in the resonance fluorescence of an atomic system.  相似文献   

3.
徐峰  郑雨军 《物理学报》2013,62(21):213401-213401
量子相空间理论已用来研究物理学、化学等有关问题, 并为人们研究经典物理和量子物理的对应关系提供了一种有力工具. 在量子相空间中, 基于Wigner表象下的量子刘维尔方程, 建立分子纠缠轨线力学. 与经典分子力学方法不同, 分子纠缠轨线力学中的轨线不再是独立的, 而是“纠缠”在一起的, 这正是体系量子效应的体现. 这种半经典 的理论方法能给出体系的量子效应及具有启示意义的物理图像. 分子纠缠轨线力学被用来研究量子隧穿效应、分子光解反应动力学、自关联函数等. 本文综述了分子纠缠轨线力学最近的发展. 关键词: 纠缠轨线 量子相空间 半经典理论  相似文献   

4.
A critique of the causla and classical stochastic interpretations of nonrelativistic quantum mechanics is presented. The only way that the classical stochastic formulation can be made compatible with the theory of quantum measurement is to extend the probability measure density for fluctuating paths to the complex domain. In doing so, we obtain the generalized stochiastic formulation in which the methods of classical probability theory can be used to describe the quantum mechanical phenomenon of interfering alternatives. Illustrative examples from quantum theory are used to show the complete compatibility between the traditional and generalized stochastic interpretations of quantum mechanics. Work supported in part by a contribution from the CNR.  相似文献   

5.
There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.  相似文献   

6.
It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at least quadratically faster than the classical ones.  相似文献   

7.
S M Roy 《Pramana》2002,59(2):337-343
Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2N-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than N+1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative definition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie-Bohm realistic theory gives highly nonclassical trajectories.  相似文献   

8.
9.
A procedure of classical extension of a theory is worked out on the basis of a natural generalization of the notion of observable, the states of the extended theory being the probability measures on the pure states of the original one. Such a classical extension applies to quantum theory, and the qualifying features of quantum observables are preserved in the extended model.  相似文献   

10.
We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function qτ(t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as . The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.  相似文献   

11.
The canonical classical extension of quantum mechanics studied recently by E. G. Beltrametti and S. Bugajski opens a new way toward generalizing the standard probability theory. The emerging fuzzy probability theory is able to give a full account of both classical and quantal probabilities, and—like the standard probability theory—could be of universal use, far outside the borders of physics. A specific feature of this hypothetical theory of probability is its mixed, classical-quanta character: classical as well as quantal random variables are described on an equal footing in a unified framework. Some new features of the fuzzy probability theory are shown on simple examples.  相似文献   

12.
We show that there is a close relationship between quantum mechanics and ordinary probability theory. The main difference is that in quantum mechanics the probability is computed in terms of an amplitude function, while in probability theory a probability distribution is used. Applying this idea, we then construct an amplitude model for quantum mechanics on phase space. In this model, states are represented by amplitude functions and observables are represented by functions on phase space. If we now postulate a conjugation condition, the model provides the same predictions as conventional quantum mechanics. In particular, we obtain the usual quantum marginal probabilities, conditional probabilities and expectations. The commutation relations and uncertainty principle also follow. Moreover Schrödinger's equation is shown to be an averaged version of Hamilton's equation in classical mechanics.  相似文献   

13.
The probability pattern emerging in two-slit experiments is a typical quantum feature whose essential ingredients are examined by translating them into the spin- formalism. In view of the existence of extensions of quantum theory preserving some classical structure, we discuss how the two-slit probabilities behave under such extensions. We consider a generalization of the standard classical probability theory, to be called operational probability theory, that turns out to host the so called quantum probabilities.  相似文献   

14.
Density contrasts in the universe are governed by scalar cosmological perturbations which, when expressed in terms of gauge-invariant variables, contain a classical component from scalar metric perturbations and a quantum component from inflaton field fluctuations. It has long been known that the effect of cosmological expansion on a quantum field amounts to squeezing. Thus, the entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems. Entropy of a free quantum field is a seemingly simple yet subtle issue. In this paper, different from previous treatments, we tackle this issue with a fully developed nonequilibrium quantum field theory formalism for such systems. We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements and the Wigner functions, and, from them, derive the von Neumann entropy. We then show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced upon coarse-graining out the correlation between the particle pairs. We also construct the bridge between our quantum field-theoretic results and those using the probability distribution of classical stochastic fields by earlier authors, preserving some important quantum properties, such as entanglement and coherence, of the quantum field.  相似文献   

15.
I argue that quantum theory can, and in fact must, be applied to the Universe as a whole. After a general introduction, I discuss two concepts that are essential for my chain of arguments: the universality of quantum theory and the emergence of classical behaviors by decoherence. A further motivation is given by the open problem of quantum gravity. I then present the main ingredients of quantum cosmology and discuss their relevance for the interpretation of quantum theory. I end with some brief epistemological remarks.  相似文献   

16.
利用半经典理论对粒子在开放型四分之一圆形微腔中的逃逸过程进行了研究,推导出了逃逸几率密度的计算公式.我们研究了一簇从四分之一圆形微腔的左下方的入口出射、并从该微腔右边界逃逸的粒子轨迹.对于粒子的每一条逃逸轨迹,记录下它的传播时间和逃逸的位置.结果发现逃逸时间图随着逃逸点的位置的变化曲线呈现出振荡结构.随着碰撞次数的增加,逃逸点的位置越靠近该腔的右顶端.对一系列的探测点,找到从源点出发到达探测点的轨迹,然后应用半经典理论来构造波函数,进而给出逃逸几率密度的计算公式.研究结果标明,逃逸几率密度与探测平面上逃逸点的位置、粒子的动量、初始出射角及与微腔的碰撞次数有关.为了更清楚的看出量子力学和经典力学之间的联系,我们对体系的半经典波函数进行傅里叶变换,给出了粒子的路径长度谱.路径长度谱的每个峰值对应于一条粒子逃逸轨迹的长度.本文的研究对理解量子力学和经典力学之间的联系以及研究粒子在微腔中的的逃逸和输运过程有一定的参考价值.  相似文献   

17.
利用半经典理论对粒子在开放型四分之一圆形微腔中的逃逸过程进行了研究,推导出了逃逸几率密度的计算公式。我们研究了一簇从四分之一圆形微腔的左下方的入口出射、并从该微腔右边界逃逸的粒子轨迹。对于粒子的每一条逃逸轨迹,记录下它的传播时间和逃逸的位置。结果发现逃逸时间图随着逃逸点的位置的变化曲线呈现出振荡结构。随着碰撞次数的增加,逃逸点的位置越靠近该腔的右顶端。对一系列的探测点,找到从源点出发到达探测点的轨迹,然后应用半经典理论来构造波函数,进而给出逃逸几率密度的计算公式。研究结果标明,逃逸几率密度与探测平面上逃逸点的位置、粒子的动量、初始出射角及与微腔的碰撞次数有关。为了更清楚的看出量子力学和经典力学之间的联系,我们对体系的半经典波函数进行傅里叶变换,给出了粒子的路径长度谱。路径长度谱的每个峰值对应于一条粒子逃逸轨迹的长度。本文的研究对理解量子力学和经典力学之间的联系以及研究粒子在微腔中的的逃逸和输运过程可以提供一定的参考价值。  相似文献   

18.
The causal theory for the coherent state representation of quantum mechanics is derived. The general conditions for the classical limit are given and it is shown that phase space classical mechanics can be obtained as a limit even for stationary states, in contrast to the de Broglie-Bohm quantum theory of motion.  相似文献   

19.
In this paper we explore the mathematical foundations of quantum field theory. From the mathematical point of view, quantum field theory involves several revolutions in structure just as severe as, if not more than, the revolutionary change involved in the move from classical to quantum mechanics. Ordinary quantum mechanics is based upon real-valued observables which are not all compatible. We will see that the proper mathematical understanding of Fermi fields involves a new concept of probability theory, the graded probability space. This new concept also yields new points of view concerning ergodic theorems in statistical mechanics.  相似文献   

20.
The frame of classical probability theory can be generalized by enlarging the usual family of random variables in order to encompass nondeterministic ones. This leads to a frame in which two kinds of correlations emerge: the classical correlation that is coded in the mixed state of the physical system and a new correlation, to be called probabilistic entanglement, which may occur also at pure states. We examine to what extent this characterization of correlations can be applied to quantum mechanics. Explicit calculations on simple examples outline that a same quantum state can show only classical correlations or only entanglement depending on its statistical content; situations may also arise in which the two kinds of correlations compensate each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号