首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity are studied. The cavity surface is subjected to ramp-type heating of its internal boundary, which is assumed to be traction free. Lord–Shulman and Green–Lindsay models for the generalized thermoelasticity theories are selected since they allow for second-sound effects and reduce to the classical model for an appropriate choice of the parameters. The temperature, radial displacement, radial stress, and hoop stress distributions are computed numerically using the finite-element method (FEM). The results are presented graphically for different values of the thermal relaxation times using the three different theories of generalized thermoelasticity. Excellent agreement is found between the finite-element analysis and analytical and classical solutions.  相似文献   

3.
A triangular grid method is presented to calculate propagation problems of elastic stress waves in 2-D orthotropic materials. This method is based on the dynamic equilibrium equations of the computational cells formed among the auxiliary triangular grids. The solution is obtained by calculating alternately the nodal displacements and the central point stresses of the spatial grids. The numerical results are compared with the corresponding solutions of the finite element method. Comparisons show that the triangular grid method yields a higher calculational speed than the finite element method. The stress concentrations are investigated from wave-field analyses when the stress wave propagates within an orthotropic plate with a hole. Finally, the presented numerical method is used to study the features of wave propagation and diffraction in a square orthotropic plate with a hole when an impact load is applied to the top of the plate.This work was supported by National Natural Science Foundation of China (Nos. 10025212 and 10232040) and Natural Science Foundation of Liaoning province (No. 20021070).  相似文献   

4.
The problem of estimating the bending stress distribution in the neighborhood of a crack located on a single line in an orthotropic elastic plate of constant thickness subjected to out-of-plane concentrated moments is examined. Using classical plate theory and integral transform techniques, the general formulae for the bending moment and twisting moment in an elastic plate containing cracks located on a single line are derived. The solution is obtained in a closed form for the case in which there is a single crack in an infinite plate subjected to symmetric concentrated moments.  相似文献   

5.
The stress state of an elastic orthotropic medium with an arbitrarily oriented triaxial ellipsoidal inclusion is analyzed. A solution is obtained using the triple Fourier transform and the Fourier-transformed Green’s function for an infinite anisotropic medium. The high efficiency of the approach is demonstrated by solving the problem for a transversely isotropic material with a spheroidal cavity for which the exact solution is known. A numerical analysis is conducted to study the stress distribution over the surface of the inclusion with different orientations in the orthotropic space. It is revealed that in some cases the orientation of the inclusion has a strong effect on the stress concentration __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 55–61, April 2007.  相似文献   

6.
Complex variable and eigenfunction expansion methods are used to derive elastic stress fields near the cohesive zone of a crack aligned with principal axes of a degenerate orthotropic material. Asymptotic field terms are obtained using coordinate rescaling and transformation techniques. The stress fields do not have stress singularity. Variations of stress components associated with the first-order or dominant stress terms are discussed in detail.   相似文献   

7.
Mode III impact of a crack in an orthotropic functionally graded strip is investigated. The shear moduli in two directions of the material are assumed to vary proportionately with gradient. Laplace transform and Fourier cosine transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Energy density factor criterion is applied to obtain the maximum of minimum energy density and direction of crack initiation. Numerical results are given graphically. The effects of orthotropy, nonhomogeneity and height of the strip on the energy density factor are discussed.  相似文献   

8.
The problem of crack trajectory stabilization in composite material is investigated. The equation for a crack path is found from the variational principle. It is considered as a path along which the extreme amount of energy is generated during the destruction. This statement corresponds to the variational problem analogous to the Lagrange–d’Alembert principle of classic mechanics and to the Fermat principle in optic and acoustic. For a crack path in inhomogeneous medium, nonlinear differential equation is obtained. Stability of the crack propagation in the inhomogeneous medium is considered. In particular, a 2D crack propagating in a composite material is considered. The path of propagation is assumed to cross layers or fibres. For layered and piece-wise continuous composites, the resulting governing equation corresponds to different kind of Duffing’s equation. The bifurcations of the trajectory and instability of crack path are investigated numerically. Conditions of crack trajectory stabilization are found. Properties of the materials that stabilized the crack trajectory are found.  相似文献   

9.
The static-equilibrium problem for an elastic orthotropic space with an elliptic crack is solved. The stress state of the space is represented as a superposition of the principal and perturbed states. To solve the problem, Willis' approach is used. It is based on the Fourier transform in spatial variables, the Fourier-transformed Green function for anisotropic material, and Cauchy's residue theorem. The contour integrals appearing during solution are evaluated using Gaussian quadratures. The results for particular cases are compared with those obtained by other authors. The influence of anisotropy on the stress intensity factors is studied __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 8, pp. 72–81, August 2005.  相似文献   

10.
The stress state of an elastic orthotropic medium with a penny-shaped crack   总被引:2,自引:0,他引:2  
The static-equilibrium problem for an elastic orthotropic space with a circular (penny-shaped) crack is solved. The stress state of an elastic medium is represented as a superposition of the principal and perturbed states. To solve the problem, Willis approach is used, which is based on the triple Fourier transform in spatial variables, the Fourier-transformed Greens function for an anisotropic material, and Cauchys residue theorem. The contour integrals obtained are evaluated using Gauss quadrature formulas. The results for particular cases are compared with those obtained by other authors. The influence of anisotropy on the stress intensity factors is studied.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 76–83, December 2004.  相似文献   

11.
Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of 2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions. Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media. The project supported by the Basic Research Foundation of Tsinghua University, the National Foundation for Excellent Doctoral Thesis (200025) and the National Natural Science Foundation of China (19902007). The English text was polished by Keren Wang.  相似文献   

12.
A crack with an electric displacement saturation zone in an electrostrictive material under purely electric loading is analyzed. A strip saturation model is here employed to investigate the effect of the electrical polarization saturation on electric fields and elastic fields. A closed form solution of electric fields and elastic fields for the crack with the strip saturation zone is obtained by using the complex function theory. It is found that the K I -dominant region is very small compared to the strip saturation zone. The generalized Dugdale zone model is also employed in order to investigate the effect of the saturation zone shape on the stress intensity factor. Using the body force analogy, the stress intensity factor for the asymptotic problem of a crack with an elliptical saturation zone is evaluated numerically.  相似文献   

13.
The present article deals with a two-dimensional problem of generalized thermoelasticity with memory-dependent derivatives (MDDs). The problem is considered in homogeneous orthotropic medium in the context of three-phase-lag model in the presence of a magnetic field. The matrix differential equation is formed by using Laplace and Fourier transforms into the considered equations which are solved by eigenvalue approach. The effect of magnetic field on the considered parameters is presented graphically and compared with other thermoelastic models. The effect of different time delay and kernel function on the considered parameter is also presented graphically.

Communicated by Seonho Cho.  相似文献   


14.
The static equilibrium of an elastic orthotropic medium with an elliptic crack subject, on its surface, to linearly varying pressure is studied. The stress state of the elastic medium is represented as a superposition of the principal and perturbed states. Use is made of Willis’ approach based on the triple Fourier transform in spatial variables, the Fourier-transformed Green’s function for an anisotropic material, and Cauchy’s residue theorem. The contour integrals are evaluated using Gaussian quadratures. The results for particular cases are compared with those obtained by other authors. The influence of orthotropy on the stress intensity factors is studied __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 73–81, July 2006.  相似文献   

15.
The static-equilibrium problem for an elastic orthotropic space with an elliptical crack is solved. The stress state of the space is represented as a superposition of the principal and perturbed states. To solve the problem, Willis’s approach is used. It is based on the Fourier transform in spatial variables, the Fourier-transformed Green function for anisotropic material, and Cauchy’s residue theorem. The contour integrals appearing during solution are evaluated using Gaussian quadratures. The results for particular cases are compared with those obtained by other authors. The influence of anisotropy on the stress intensity factors is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 20–29, April 2005.  相似文献   

16.
The solution for an elliptical cavity in an infinite two-dimensional magnetoelectroelastic medium subject to remotely uniformly applied combined mechanical–electric–magnetic loadings is obtained by using the Stroh formalism and the exact boundary conditions along the surface of the cavity. By letting the minor-axis of the cavity to zero the solution for a crack is deduced. A self-consistent method is proposed to calculate the real crack opening under the combined mechanical–electric–magnetic loadings. The method requires that the crack opening is the minor-axis of the elliptical opening profile. Beside the real crack solution, four different extreme models, i.e., the impermeable crack, permeable crack, electrically impermeable and magnetically permeable crack and electrically permeable and magnetically impermeable crack, are discussed. An expression of the strain energy density factor is derived. Numerical results of the strain energy density at the crack tip are given for a BaTiO3–CoFe2O4 composite with the piezoelectric BaTiO3 material being the inclusion and the magnetostrictive CoFe2O4 material being the matrix. The effects of the proportion of the two phases, permeability of the crack to electric and magnetic fields, the electric and magnetic loadings on the strain energy density factor are discussed.  相似文献   

17.
18.
This report describes investigations of grain boundary groove effects on mode II dominated interface fracture. The study focused on a specific interface between stainless steel and an epoxy adhesive. First, a finite element model was developed to simulate residual stresses and crack propagation. Second, the simulation results were compared with the experimental results from a previous study (Kanerva et al., 2013. Eng. Fract. Mech. 99, 147-158). Additional measurements were performed using atomic force microscopy. Based on the simulation, a 100-fold toughening effect due to the grain boundaries was determined. Implementation of flaws, in the form of interfacial voids, decreased the toughening effect by 35% and increased the mode II dominance significantly. The work underlines the practical importance of complete wetting by the adhesive and its necessary adherence to the grain boundary groove walls.  相似文献   

19.
In the present Note, we provide new analytical expressions of the components of Hill tensor P (or equivalently the Eshelby tensor S) associated to an arbitrarily oriented crack in orthotropic elastic medium. The crack is modelled as an infinite cylinder along a symmetry axis of the matrix, with low aspect ratio. The three dimensional results obtained show explicitly the interaction between the primary (structural) anisotropy and the crack-induced anisotropy. They are validated by comparison with existing results in the case where the crack is in a symmetry plane. To cite this article: C. Gruescu et al., C. R. Mecanique 333 (2005).  相似文献   

20.
The problem of finite wave propagation in a nonlinearly thermoviscoelastic thin rod whose viscoelastic properties are temperature dependent is considered. The rod is subjected to mechanical or thermal time-dependent loading. The coupled equations of motion and heat conduction are based on a constitutive theory of nonisothermal nonlinear viscoelasticity which is described by single-integral terms only. This theory is reformulated here for the uniaxial motion of a compressible rubbery material. The solution of the field equations is obtained by a numerical procedure which is developed for the present case and is able to handle successfully shock waves whenever they built up in the nonlinear material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号