首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pressurized liquid extraction (PLE) is a relatively new technique applicable for the extraction of persistent organic pollutants from various matrices. The main advantages of this method are short time and low consumption of extraction solvent. The effects of various operational parameters (i.e. temperature of extraction, number of static cycles and extraction solvent mixtures) on the PLE efficiency were investigated in this study. Fish muscle tissue containing 3.2% (w/w) lipids and native polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and other related compounds was used for testing. Purification of crude extracts was carried out by gel permeation chromatography employing Bio-Beads S-X3. Identification and quantitation of target indicator PCBs and OCPs was performed by high-resolution gas chromatography (HRGC) with two parallel electron-capture detectors (ECDs). Results obtained by the optimized PLE procedure were compared with conventional Soxhlet extraction (the same extraction solvent mixtures hexane–dichloromethane (1:1 v/v) and hexane–acetone (4:1 v/v) were used). The recoveries obtained by PLE operated at 90–120 °C were either comparable to “classic” Soxhlet extraction (for higher-chlorinated PCB congeners and DDT group) or even better (for lower chlorinated analytes). The highest recoveries were obtained for three static 5 min extraction cycles.  相似文献   

2.
In this study the extraction efficiency of pressurized liquid extraction (PLE), employing different extraction solvent mixtures under different extraction conditions, was compared with extraction efficiencies of commonly used procedures, Soxhlet extraction and extraction enhanced by sonication. Spruce needles and fish tissue were selected as test samples. Purification of obtained extracts was carried out by gel permeation chromatography (GPC) employing gel Bio-Beads S-X3. Identification and quantitation of target PAHs was performed by high-performance liquid chromatography with fluorescence detection (HPLC–FLD).

Within optimisation of PLE conditions, temperature of extraction, type of solvent, duration and number of static cycles as well as the influence of sample pre-treatment (drying, homogenisation, etc.) were tested. Comparison of the extraction efficiency of PLE with the efficiencies of the other techniques was done under the optimised conditions, i.e. sample slurry obtained by desiccation with anhydrous sodium sulphate, extracted at 100 °C in 1 cycle lasting 5 min. Hexane:acetone (1:1, v/v) was chosen as the most suitable extraction solvent for isolation of analytes from test samples.

Comparison of mentioned isolation techniques with respect to the amount of co-extracts, procedure blank levels and time and solvent volume demands was also done.  相似文献   


3.
Arapitsas P  Turner C 《Talanta》2008,74(5):1218-1223
The aim of this work was to develop a fast method for extraction and analysis of anthocyanins in red cabbage. Pressurized hot water containing 5% of ethanol was used as an extremely efficient extraction solvent. HPLC/DAD with a monolithic column was used to accomplish a fast analysis—24 anthocyanin peaks within 18 min. Statistical design was used to optimize the studied extraction parameters: temperature (80–120 °C); sample amount (1–3 g); extraction time (6–11 min); concentration of formic acid in the extraction solvent (0–5 vol.%). The best extraction conditions for a majority of the anthocyanin peaks were 2.5 g of sample, 99 °C (at 50 bar), 7 min of extraction and a solvent composition of water/ethanol/formic acid (94/5/1, v/v/v).  相似文献   

4.
A liquid–liquid extraction method using diethyl ether as organic solvent was optimized simultaneously for five 1,4-dihydropyridines (amlodipine, nitrendipine, felodipine, lacidipine and lercanidipine) belonging to the group of calcium channel blockers. Some experimental tools such as a full factorial design, a central composite design and the Multisimplex program were used to optimise the concentration of NaOH, volume of organic solvent and shaking time as main factors that influence the liquid–liquid extraction procedure. Following the extraction, the quantitation of the 1,4-dihydropyridines concentrations were performed by high-performance liquid chromatography with diode-array detector. Therefore, the studied compounds were separated quantitatively on a Supelcosil ABZ+Plus, 25 cm × 4.6 mm i.d., 5 μm column which was set at 30 °C, using as mobile phase, a mixture of acetonitrile–water (70:30, v/v) containing 10 mM acetate buffer (pH 5) and setting the detector at a wavelength value of 360 nm. It was concluded that the main factors that influence in the extraction process were the volume of organic solvent and the shaking time. The Multisimplex program suggested as optimal conditions an average of 6 ml of organic solvent and 23 min of shaking time. For these values, the optimised liquid–liquid extraction method showed good values of recoveries (80% for amlodipine and higher than 90% for the rest of the compounds) and low values of R.S.D. (<10%) in the reproducibility of the extraction what makes it reliable for the quantification of all the studied compounds in human plasma.  相似文献   

5.
An interlaboratory verified, liquid chromatographic (LC) method is presented for the analysis of all-rac-alpha-tocopheryl acetate and retinyl palmitate in soy-based infant formula. The extraction procedure uses sample dehydration with magnesium sulfate followed by extraction with isopropanol, hexane-ethyl acetate (85 + 15, v/v). After evaporation and filtration, the sample extract is injected directly onto a normal-phase LC system with fluorescence detection. All-rac-alpha-tocopheryl acetate and retinyl palmitate are quantitated isocratically with a mobile phase of hexane containing 0.50% (v/v) and 0.125% (v/v) isopropanol, respectively. A zero control reference material (ZRM) was spiked at 5 levels, with 5 replicate analyses of 1/2x, x, 2x, 4x, and 16x where "x" is the minimum level of 250 IU/100 kcal (vitamin A) and 0.7 IU/100 kcal (vitamin E) as specified in 21 Code of Federal Regulations 107.100. The following recoveries and RSD values represent an average (n = 25) of the 5 levels for each analyte: all-rac-alpha-tocopheryl acetate, 100% (RSD = 3.5%); retinyl palmitate, 97.2% (RSD = 2.1%). Two additional laboratories analyzed the fortified ZRM samples. Average recoveries (n = 24) of all-rac-alpha-tocopheryl acetate and retinyl palmitate at 4 levels were all-rac-alpha-tocopheryl acetate, 99.0% (RSD = 4.0%), and retinyl palmitate, 96.2% (RSD = 1.4%) at the second laboratory. Average recoveries (n = 24) of all-rac-alpha-tocopheryl acetate and retinyl palmitate at 4 levels were all-rac-alpha-tocopheryl acetate, 102% (RSD = 1.4%) and retinyl palmitate, 95.7% (RSD = 2.0%) at the third laboratory. In addition, 6 replicates of the same commercial soy-based infant formula powder were run by the 3 laboratories.  相似文献   

6.
This work describes the optimization of a cloud point extraction (CPE) method for casein proteins from cow milk samples. To promote phase separation, polyoxyethylene(8) isooctylphenyl ether (Triton® X-114) and sodium chloride (NaCl) were used as nonionic surfactant and electrolyte, respectively. Using multivariate studies, four major CPE variables were evaluated: Triton® X-114 concentration, sample volume, NaCl concentration, and pH. The results show that surfactant concentration and sample volume were the main variable affecting the CPE process, with the following optimized parameters: 1% (w/v) Triton® X-114 concentration, 50 μL of sample volume, 6% (w/v) NaCl concentration and extractions carried out at pH 7.0. At these conditions, 923 ± 66 and 67 ± 2 μg mL−1 of total protein were found in the surfactant-rich and surfactant-poor phases, respectively. Finally, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was then used to evaluate those target proteins (s1-casein, s2-casein and β-casein) separation as well as to check the efficiency of the extraction procedure, making a fingerprint of those target proteins possible.  相似文献   

7.
An interlaboratory-verified, liquid chromatographic (LC) method is presented for determination of all-racemic alpha-tocopheryl acetate and retinyl palmitate in infant formula. The extraction procedure uses matrix solid-phase dispersion. A sample is mixed with C18, and the mixture is packed into a reservoir and eluted with selective solvents to extract the analytes. After evaporation and filtration, the sample extract is injected directly into a normal-phase LC system with fluorescence detection. All-racemic alpha-tocopheryl acetate and retinyl palmitate are quantitated isocratically with a mobile phase of hexane containing isopropanol at 0.2% (v/v) and 0.125% (v/v), respectively. A nonfortified zero control reference material (ZRM) was spiked at 5 levels, with 5 replicate analyses of 1/2x, x, 2x, 4x, and 16x where "x" represents the minimum levels of 250 IU/100 kcal (vitamin A) and 0.7 IU/100 kcal (vitamin E) as specified in Title 21 of the Code of Federal Regulations, part 107.100. Recoveries of retinyl palmitate ranged from 83.8 to 107%, and those of all-racemic alpha-tocopheryl acetate ranged from 87.7 to 108%. Two additional laboratories analyzed the ZRM samples at 4 spiking levels with 6 replicates. Recoveries of retinyl palmitate and all-racemic alpha-tocopheryl acetate ranged from 92.2 to 104% and from 91.7 to 101%, respectively, in the second laboratory. Recoveries of retinyl palmitate and all-racemic alpha-tocopheryl acetate ranged from 85.3 to 97.0% and from 86.6 to 110%, respectively, in the third laboratory. Relative standard deviations for all 3 laboratories ranged from 0.2 to 7.5% with an average of 2.9%. In addition, each laboratory analyzed a commercial milk- and commercial soy-based infant formula. Excellent agreement in results was obtained between the 3 laboratories for vitamins A and E in all matrixes.  相似文献   

8.
A liquid chromatographic (LC) method was developed for fast and simple measurement of retinyl palmitate (vitamin A) in fortified milk. Retinyl acetate internal standard was added to a test portion of milk followed by extraction into hexane. The hexane extract was analyzed by LC using a normal-phase silica gel column equilibrated with mobile phase (conditioned hexane-isopropanol, 99.85 + 0.15, v/v) about 1 h before injections. The retinyl palmitate concentration was calculated by using a relative response factor determined with calibration standards. In the collaborative study, 11 laboratories analyzed 13 pairs of fluid milk materials in blind duplicate. Twelve of the materials were composed of skim milk (< 0.5% fat), 1% fat milk, 2% fat milk, and 1% fat chocolate milk. Each material was fortified at 3 concentrations of retinyl palmitate of approximately 581 microg/L (1000 IU/qt), 1163 microg/L (2000 IU/qt), and 2236 microg/L (4000 IU/qt). The 13th material, unfortified skim milk, served as a matrix blank. Repeatability standard deviations (RSDr) without outliers ranged from 1.5 to 5.7% and reproducibility standard deviations (RSDR) without outliers ranged from 5.0 to 22.7%. cis-Isomers co-eluted with the predominant trans-retinyl palmitate isomer and were included in the results reported by all the collaborative laboratories. Endogenous long-chain esters from milk fat were also measured with the retinyl palmitate additive. The Study Director recommends that this method for determination of retinyl palmitate in fluid milk by LC be adopted First Action.  相似文献   

9.
A method using off-line supercritical fluid extraction (SFE) and micro liquid chromatography (μLC) with UV detection at 260 nm, was developed for selective determination of fenpyroximate in apple samples. The packed capillary liquid chromatography method utilises 20 μl injection volumes with on-column focusing. A 350×0.32 mm capillary column packed with Kromasil 100-C18 of 5 μm particle size was used with a mobile phase of acetonitrile–10 mM ammonium acetate (85:15, v/v) at a flow of 5 μl/min. A two-step SFE procedure was used to extract fenpyroximate selectively in 2 g apple samples, with Hydromatrix (HMX) added as a water absorbent at a 1:1 (w:w) ratio. Fenpyroximate was extracted at 200 bar and 90°C for 15 min using carbon dioxide at a flow of 2 ml/min, and solvent trapping collection in 10 ml acetonitrile. The volume of the acetonitrile extract was reduced by evaporation and water was added to a final composition of acetonitrile–water (40:60, v/v). The resulting 2.0 ml solution was filtered using a 0.45 μm poly(vinylidene difluoride) syringe filter before μLC analysis. Validation of the method was accomplished with apple samples spiked with fenpyroximate, covering the range of 0.1 to 1.0 μg/kg. The within-day and between-day repeatabilities were in the range 4–18% relative standard deviation. Accuracy, measured as recovery, was found to be approximately 60%. Apple samples from a field treated with fenpyroximate were analysed. None of the samples contained fenpyroximate above the quantification level.  相似文献   

10.
A rapid and environmentally friendly methodology was developed for the extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs), in which they were preconcentrated in gas phase. The method was based on gas chromatography mass–mass spectrometry determination after a microwave-assisted extraction, in front of the widely employed dialysis method. SPMDs were extracted twice with 30 mL hexane:acetone, irradiated with 250 W power output, until 90 °C in 10 min, this temperature being held for another 10 min. Clean-up of the extracts was performed by acetonitrile–hexane partitioning and solid-phase extraction (SPE) with a combined cartridge of 2 g basic-alumina, deactivated with 5% water, and 500 mg C18.

Pyrethroids investigated were Allethrin, Prallethrin, Tetramethrin, Bifenthrin, Phenothrin, λ-Cyhalothrin, Permethrin, Cyfluthrin, Cypermethrin, Flucythrinate, Esfenvalerate, Fluvalinate and Deltamethrin. The main pyrethroid synergist compound, Pyperonyl Butoxide, was also studied. Limit of detection values ranging from 0.3 to 0.9 ng/SPMD and repeatability data, as relative standard deviation, from 2.9 to 9.4%, were achieved. Pyrethroid recoveries, for spiked SPMDs, with 100 ng of each one of the pyrethroids evaluated, were from 61 ± 8 to 103 ± 7% for microwave-assisted extraction, versus 54 ± 4 to 104 ± 3% for dialysis reference method. Substantial reduction of solvent consumed (from 400 to 60 mL) and analysis time (from 48 to 1 h) was achieved by using the developed procedure.

High concentration levels of pyrethroid compounds, from 0.14 to 7.3 μg/SPMD, were found in indoor air after 2 h of a standard application.  相似文献   


11.
Cadmium concentration in lake sediments is determined by suspending the solid samples in a solution containing 5% (v/v) concentrated nitric acid and 0.1% (v/v) Triton X-100. Three modifiers were tested for the direct determination. The furnace temperature programmes and appropriate amount for each modifier were optimised to get the highest signal and the best separation between the atomic and background signals. The drying stage is performed by programming a 400 °C temperature, a ramp time of 25 s and hold time of 10 s on the power supply of the atomiser. No ashing step is used and platform atomisation is carried out at 2200 °C. W–Rh permanent modifier combined with conventional modifier by delivering 10 μl of 0.50% (w/v) NH4H2PO4 solution was the best chemical modifier for cadmium determination. This modifier also acts as a liquid medium for the slurry, thus simplifying the procedure. Calibration is performed using aqueous standards in the 1–5 μg l−1 range. The optimised method gave a limit of detection of 0.56 ng ml−1, characteristic mass of 10.1±0.8 pg for aqueous standard, 9.6±0.7 pg for slurry samples containing different Cd concentrations and good precision (7.6–5.2%). The method was validated by analysing four certified reference lake sediment materials: LKSD-1, LKSD-2, LKSD-3 and LKSD-4; satisfactory recoveries were obtained (90.0–96.3%) and no statistical differences were observed between the experimental and the certified cadmium concentration. The developed methodology was used to determine cadmium in three ‘real’ sediment samples from lakes in the area of Wielkopolski National Park, Poland.  相似文献   

12.
This paper describes a new gas-chrormatography with electron capture detection (GC-ECD) method for determination of some pyrethroids in milk samples. The extraction of the pyrethroids was carried out by liquid–liquid extraction with clean-up by precipitation at low temperature, without additional stages for removal of fat interferences. The method was efficient with recoveries of 93.0 ± 0.1% for cipermethrin and 84.0 ± 0.3% for deltamethrin. The quantification limits were 0.75 μg L−1 for both pyrethroids. The method was simple, of easy execution, and used only small quantities of organic solvent. After optimization and validation, the method was used for the determination of residues of the pyrethroids cipermethrin and deltamethrin in milk and in lactea drink commercialized in Viçosa (MG, Brazil). Some samples presented contamination with deltamethrin at levels below the maximum contamination limits established by the FAO.  相似文献   

13.
A nonaqueous electrochromatographic reversed-phase separation method for retinyl esters using continuous bed columns has been developed. The packing material 7 μm Nucleosil 4000 Å C18 was sol–gel bonded in 180 μm I.D. capillaries. The mobile phase used was 2.5 mM lithium acetate in N,N-dimethylformamide–acetonitrile–methanol (2+7+1, v/v). At 350 V/cm and 30°C, this mobile phase composition gave rise to an electroosmotic flow of 1 mm/s. No Joule heating nor bubble formation were observed even at 625 V/cm (17 μA). With a 36 cm Leff column complete separation of the commercially available and synthesized standards (all-trans-retinyl acetate, palmitate, heptadecanoate, stearate, oleoate, and linoleoate) was obtained within 10 min. The within-day and between-day variations of retention times of all-trans-retinyl palmitate were <0.3% relative standard deviation (RSD) (n=3) and <2% RSD (n=6), respectively. The within-day and between-day variations of peak areas were both <2% (both n=3). The columns were used for more than 1 month without degradation. Liver extracts from arctic seal were analyzed.  相似文献   

14.
In the present study, we have developed a method based on pressurized liquid extraction (PLE) and liquid chromatography with fluorescence detection (LC-FLD) for the determination of residues of fluoroquinolones (FQs) in infant food products. PLE extraction has been optimized by the application of experimental design methodologies. Initially, a fractional factorial design (FFD) was used to screen the significance of four extraction parameters: solvent composition, temperature, pressure and number of cycles. The most significant factors, identified by ANOVA analysis, were the solvent composition, temperature and pressure, which were further optimized with the aid of a face centred design (FCD) and the desirability function. The optimized operating PLE conditions were as follows: ACN/o-phosphoric acid 50 mM pH 3.0 (80:20, v/v), 80 °C, 2000 psi and three extraction cycles of 5 min. Under these conditions, recoveries of the target FQs varied between 69% and 107% with RSDs below 9%. The whole method was validated according to the Commission Decision 2002/657/EC guidelines. The proposed method has been successfully applied to the analysis of different infant food products bought in local supermarkets and pharmacies. The results showed the presence of residues of enrofloxacin in a non-compliant baby food sample corresponding to a chicken-based formulation, which were also confirmed and quantified by LC–MS/MS analysis.  相似文献   

15.
A novel derivatization-ultrasonic assisted-dispersive liquid–liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06–0.90 μg mL−1 and 0.9987–0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.  相似文献   

16.
Pressurized liquid extraction (PLE) was used to isolate tocopherols from seeds and nuts. Very clean extracts were obtained, which were injected directly into the chromatographic system. This enables rapid and simple control in food analysis. The PLE extraction temperature was set at 50 degrees C, with two cycles of extraction, a static time of 5 min, and acetonitrile as the extraction solvent. LC separation was accomplished on a Synergi Hydro-RP column with methanol-water (99.9:0.1, v/v) containing 2.5 mM acetic acid/sodium acetate buffer, as eluent. Coulometric detection, with a porous graphite electrode at +700 mV, was used. The method was successfully applied to the determination of alpha-, (beta + gamma)- and delta-tocopherols in almonds, sunflower seeds, hazelnuts and walnuts. The recoveries were in the 82-110% range. The results were validated with those obtained using sample treatment including alkaline hydrolysis.  相似文献   

17.
Pressurized liquid extraction (PLE) was applied to the simultaneous extraction of a wide range of pesticides from food commodities. Extractions were performed by mixing 4 g of sample with 4 g of Hydromatrix and (after optimization) a mixture of ethyl acetate:acetone (3:1, v/v) as extraction solvent, a temperature of 100°C, a pressure of 1000 psi and a static extraction time of 5 min. After extraction, the more polar compounds were analyzed by liquid chromatography (LC), and the apolar and semipolar pesticides by gas chromatography (GC); in both cases LC and GC were coupled with mass spectrometry in tandem (MS/MS) mode. The overall method (including the PLE step) was validated in GC and LC according to the criteria of the SANCO Document of the European Commission. The average extraction recoveries (at two concentration levels) for most of the analytes were in the range 70–80%, with precision values usually lower than 15%. Limits of quantification (LOQ) were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRL) specified by legislation. In order to assess its applicability to the analysis of real samples, aliquots of 15 vegetable samples were processed using a conventional extraction method with dichloromethane, and the results obtained were compared with the proposed PLE method; differences lower than 0.01 mg kg−1 were found.  相似文献   

18.
Ultrasound-assisted extraction of capsaicinoids from peppers   总被引:1,自引:0,他引:1  
Barbero GF  Liazid A  Palma M  Barroso CG 《Talanta》2008,75(5):1332-1337
The development of a rapid, reproducible and simple method of extraction of the majority capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) present in hot peppers by the employment of ultrasound-assisted extraction is reported. The study has covered four possible solvents for the extraction (acetonitrile, methanol, ethanol and water), the optimum temperature for extraction (10–60 °C), the extraction time (2–25 min), the quantity of sample (0.2–2 g), and the volume of solvent (15–50 mL). Under the optimum conditions of the method developed, methanol is employed as solvent, at a temperature of 50 °C and an extraction time of 10 min. The repeatability and reproducibility of the method (R.S.D. < 3%) have been determined. The capsaicinoids extracted have been analysed by HPLC with fluorescence detection and using monolithic columns for the chromatographic separation. The method developed has been employed for the quantification of the various capsaicinoids present in different varieties of hot peppers cultivated in Spain.  相似文献   

19.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium H3O+(aq) + 1· Na+(nb)  1·H3O+(nb) + Na+(aq) taking place in the two-phase water–nitrobenzene system (1 = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (H3O+, 1·Na+) = −0.6 ± 0.1. Further, the stability constant of the 1·H3O+ complex in water saturated nitrobenzene was calculated for a temperature of 25 °C as log βnb (1·H3O+) = 6.8 ± 0. 2. By using quantum mechanical DFT calculations, the most probable structure of the 1·H3O+ complex species was predicted. In this complex, the hydroxonium ion H3O+ is bound partly to three carbonyl oxygen atoms by strong hydrogen bonds and partly to three alternate phenoxy oxygens by somewhat weaker hydrogen bonds.  相似文献   

20.
A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5 mL of water by focussed sonication for 30 s and subsequent centrifugation at 14,000 × g for 10 min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic.

An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10 kDa, which accounts for about 100% for all samples analysed.

Speciation studies were carried out by HPLC–ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17 mM phosphate buffer at pH 5.5 and 1.0 mL min−1 flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13 min, with detection limits of about 20 ng of arsenic per species, for a sample injection volume of 100 μL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46 ± 2 μg g−1), Sargassum (38 ± 2 μg g−1) and Chlorella (9 ± 1 μg g−1) samples. The species DMA was also found in Chlorella alga (13 ± 1 μg g−1). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号