首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
When a very small concentration of H2 is added to a Ne:NH3=800:1 sample and the resulting mixture is deposited at 4.3 K, a new absorption appears at 4151.1 cm(-1) which can be assigned to the H2 stretching fundamental of H2 (j=1) complexed with NH3. Other new absorptions which appear near the vibrational fundamentals of NH3 are assigned to the NH3 moiety in this complex and in the complex of NH3 with H2 (j=0). The results of experiments in which HD or D2 is added to the Ne:NH3 mixture support these assignments. Ab initio and density functional calculations predict the observed infrared activation of the H2-stretching vibration for a structure in which the axis of the H2 molecule is collinear with the threefold axis of the NH3. The dependence of the observed absorption patterns on the concentration of H2 in the sample indicates that complexes of NH3 with two or more H2 molecules also form readily.  相似文献   

2.
In support of mass-selected infrared photodissociation (IRPD) spectroscopy experiments, coupled-cluster methods including all single and double excitations (CCSD) and a perturbative contribution from connected triple excitations [CCSD(T)] have been used to study the V+(H2O) and ArV+(H2O) complexes. Equilibrium geometries, harmonic vibrational frequencies, and dissociation energies were computed for the four lowest-lying quintet states (5A1, 5A2, 5B1, and 5B2), all of which appear within a 6 kcal mol(-1) energy range. Moreover, anharmonic vibrational analyses with complete quartic force fields were executed for the 5A1 states of V+(H2O) and ArV+(H2O). Two different basis sets were used: a Wachters+f V[8s6p4d1f] basis with triple-zeta plus polarization (TZP) for O, H, and Ar; and an Ahlrichs QZVPP V[11s6p5d3f2g] and Ar[9s6p4d2f1g] basis with aug-cc-pVQZ for O and H. The ground state is predicted to be 5A1 for V+(H2O), but argon tagging changes the lowest-lying state to 5B1 for ArV+(H2O). Our computations show an opening of 2 degrees -3 degrees in the equilibrium bond angle of H2O due to its interaction with the metal ion. Zero-point vibrational averaging increases the effective bond angle further by 2.0 degrees -2.5 degrees, mostly because of off-axis motion of the heavy vanadium atom rather than changes in the water bending potential. The total theoretical shift in the bond angle of about +4 degrees is significantly less than the widening near 9 degrees deduced from IRPD experiments. The binding energies (D0) for the successive addition of H2O and Ar to the vanadium cation are 36.2 and 9.4 kcal mol(-1), respectively.  相似文献   

3.
When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species.  相似文献   

4.
Laser-ablated U atoms react with H2O during condensation in excess argon. Infrared absorptions at 1416.3, 1377.1, and 859.4 cm(-1) are assigned to symmetric H-U-H, antisymmetric H-U-H, and U=O stretching vibrations of the primary reaction product H(2)UO. Uranium monoxide, UO, also formed in the reaction, inserts into H2O to produce HUO(OH), which absorbs at 1370.5, 834.3, and 575.7 cm(-1). The HUO(OH) uranium(IV) product undergoes ultraviolet photoisomerization to a more stable H2UO2 uranium(VI) molecule, which absorbs at 1406.4 and 885.9 cm(-1). Several of these species, particularly H2UO2, appear to form weak Ar-coordinated complexes. The predicted vibrational frequencies, relative absorption intensities, and isotopic shifts from relativistic DFT calculations are in good agreement with observed spectra, which further supports the identification of novel uranium oxyhydrides from matrix infrared spectra.  相似文献   

5.
FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.  相似文献   

6.
We have measured the infrared spectrum of H2O.HO in argon matrices at 11.5 +/- 0.5 K. We have also calculated the vibrational frequencies and intensities of the H2O.HO complex. As a result of these measurements and calculations, we have assigned a previously unassigned absorption band at 3442.1 cm-1 to the OH stretch in the radical complexed to the water molecule. This absorption originates from a complex that is situated in a different site within the argon matrix to those absorptions already assigned to this vibration at 3452.2 and 3428.0 cm-1. We observe a decrease in intensity of the OH radical stretching vibration of the H2O.HO complex upon isotopic substitution of D for H that agrees well with our calculations.  相似文献   

7.
This paper describes a systematic study on the clathrate structure of (H+)(H2O)21 using tandem mass spectrometry, vibrational predissociation spectroscopy, Monte Carlo simulations, and density functional theory calculations. We produced (H+)(H2O)n from a continuous corona-discharged supersonic expansion and observed three anomalies simultaneously at the cluster temperature near 150 K, including (1) the peak at n=21 is more intense than its neighboring ions in the mass spectrum, (2) the size-dependent dissociation fractions show a distinct drop for the 21-mer, and (3) the infrared spectrum of (H+)(H2O)21 exhibits only a single feature at 3699 cm(-1), corresponding to the free-OH stretching of three-coordinated water molecules. Interestingly, the anomalies appear or disappear together with cluster temperature, indicating close correlation of these three observations. The observations, together with Monte Carlo simulations and density functional theory calculations, corroborate the notion for the formation of a distorted pentagonal dodecahedral (5(12)) cage with a H2O molecule in the cage and a H3O+ ion on the surface for this "magic number" water cluster ion. The dodecahedral cage melts at higher temperatures, as evidenced by the emergence of a free-OH stretching feature at 3717 cm(-1) for the two-coordinated water in (H+)(H2O)21 produced in a warmer molecular beam. Extension of this study to larger clusters strongly suggests that the experimentally observed isomer of (H+)(H2O)28 is most likely to consist of a distorted protonated pentakaidecahedral (5(12)6(3)) cage enclosing two neutral water molecules.  相似文献   

8.
The reaction of laser-ablated Al atoms and normal-H(2) during co-deposition at 3.5 K produces AlH, AlH(2), and AlH(3) based on infrared spectra and the results of isotopic substitution (D(2), H(2) + D(2) mixtures, HD). Four new bands are assigned to Al(2)H(4) from annealing, photochemistry, and agreement with frequencies calculated using density functional theory. Ultraviolet photolysis markedly increases the yield of AlH(3) and seven new absorptions for Al(2)H(6) in the infrared spectrum of the solid hydrogen sample. These frequencies include terminal Al-H(2) and bridge Al-H-Al stretching and AlH(2) bending modes, which are accurately predicted by quantum chemical calculations for dibridged Al(2)H(6), a molecule isostructural with diborane. Annealing these samples to remove the H(2) matrix decreases the sharp AlH(3) and Al(2)H(6) absorptions and forms broad 1720 +/- 20 and 720 +/- 20 cm(-1) bands, which are due to solid (AlH(3))(n). Complementary experiments with thermal Al atoms and para-H(2) at 2.4 K give similar spectra and most product frequencies within 2 cm(-1). Although many volatile binary boron hydride compounds are known, binary aluminum hydride chemistry is limited to the polymeric (AlH(3))( solid. Our experimental characterization of the dibridged Al(2)H(6) molecule provides an important link between the chemistries of boron and aluminum.  相似文献   

9.
Products in the reactions of H2O2 and H2, O2 mixtures have been observed by matrix infrared absorptions and identified through comparisons with vibrational frequencies calculated for these molecules. The chromium reactions are dominated by lower oxidation state products, whereas molybdenum and tungsten chemistry favors higher oxidation state products. For example chromium dihydroxide, Cr(OH)2, molybdenum hydride oxide, H2MoO2, and tungsten hydride oxide, H2WO2, were observed in laser-ablated metal atom reactions with H2O2, and calculations show that these are the most stable molecules for this stoichiometry. Chromium monohydroxide, CrOH, was identified through O-H and Cr-O stretching modes, while HWO was observed by W-H and W=O stretching modes. The metal oxyhydroxides, HMO(OH), were observed for all metals. However, reactions with two H2O2 molecules give OCr(OH)2, MoO2(OH)2, and WO2(OH)2. The relative stabilities of different structures for Cr, Mo, and W are due to different participations of occupied d orbitals. The reactivity of the cold metal atoms with H2O2 on annealing the solid argon matrix increases on going down the group.  相似文献   

10.
Reactions of laser-ablated Th atoms with H2O during condensation in excess argon have formed a variety of intriguing new Th, H, O species. Infrared absorptions at 1406.0 and 842.6 cm-1 are assigned to the H-Th and Th=O stretching vibrations of HThO. Absorptions at 1397.2, 1352.4, and 822.8 cm-1 are assigned to symmetric H-Th-H, antisymmetric H-Th-H, and Th=O stretching vibrations of the major primary reaction product H2ThO. Thorium monoxide (ThO) produced in the reaction inserts into H2O to form HThO(OH), which absorbs at 1341.0, 804.0, and 542.6 cm-1. Both HThO(OH) and ThO2 add another H2O molecule to give HTh(OH)3 and OTh(OH)2, respectively. Weaker thorium hydride (ThH1(-4)) absorptions were also observed. Relativistic DFT and ab initio calculations were performed on all proposed molecules and other possible isomers. The good agreement between experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts provides support for these first identifications of Th, H, O molecular species.  相似文献   

11.
The ultrafast relaxation dynamics of Cu(H(2)O)(2) is investigated using femtosecond photodetachment-photoionization spectroscopy. In addition, stationary points on the Cu(H(2)O)(2) anion, neutral, and cation potential energy surfaces are characterized by ab initio electronic structure calculations. Electron photodetachment from Cu(-)(H(2)O)(2) initiates the dynamics on the ground-state potential energy surface of neutral Cu(H(2)O)(2). The resulting Cu(H(2)O)(2) complexes experience large-amplitude H(2)O reorientation and dissociation. The time evolution of the Cu(H(2)O)(2) fragmentation products is monitored by time-resolved resonant multiphoton ionization. The parent ion, Cu(+)(H(2)O)(2), is not detected above background levels. The rise to a maximum of the Cu(+) signal from Cu(-)(H(2)O)(2), and the decay of the Cu(+)(H(2)O) signal from Cu(-)(H(2)O)(2) have similar tau approximately 10 ps time dependences to the corresponding signals from Cu(-)(H(2)O), but display clear differences at very short and long times. The experimental observations can be understood in terms of the following picture. Prompt dissociation of H(2)O from nascent Cu(H(2)O)(2) gives rise to a vibrationally excited Cu(H(2)O) complex, which dissociates to Cu+H(2)O due to coupling of H(2)O internal rotation to the dissociation coordinate. This prompt dissociation removes all intra-H(2)O vibrational excitation from the intermediate Cu(H(2)O) fragment, which quenches the long time vibrational predissociation to Cu+H(2)O previously observed in analogous experiments on Cu(-)(H(2)O).  相似文献   

12.
A theoretical study has been made on six isomers of H2SO2 using coupled-cluster singles and doubles with noniterative triple excitations (CCSD(T)). The isomers studied are sulfoxylic acid (S(OH)2; C2 and Cs conformers), sulfinic acid (HS(=O)OH; 2 C1 conformers), dihydrogen sulfone (H2SO2; C2v), sulfhydryl hydroperoxide (HSOOH; C1), thiadioxirane (Cs), and dihydrogen persulfoxide (H2SOO; Cs). Molecular geometries, harmonic vibrational frequencies, and infrared intensities of all species were obtained using the CCSD(T) method and the 6-311++G(2d,2p) basis set. All aforementioned species were found to be local minima, with the exception of thiadioxirane, which has one imaginary frequency. A prior possible infrared observation of sulfinic acid was reassessed on the basis of the present data. In agreement with previous MP2 results, the present CCSD(T) data provide support for at most 4 of the 8 observed frequencies. The CCSD(T) frequencies and intensities should be of assistance in future identification of H2SO2 isomers by vibrational spectroscopy. Relative energies were calculated using the CCSD(T) method and several larger basis sets. As found previously, the lowest energy species is C2 S(OH)2, followed by Cs S(OH)2, HS(=O)OH, H2SO2, HSOOH, thiadioxirane, and H2SOO. Expanding the basis set significantly reduces the relative energies of HS(=O)OH and H2SO2. The CCSD(T) method was used with extended basis sets (up to aug-cc-pV(Q+d)Z) and basis set extrapolation in two reaction schemes to calculate the DeltaH degrees t (25 degrees C) of C2 S(OH)2. The two reaction schemes gave -285.8 and -282.7 kJ mol-1, which are quite close to a prior theoretical estimate (-290 kJ mol-1).  相似文献   

13.
The C2H2 + O(3P) and HCCO + O(3P) reactions are investigated using Fourier transform infrared (FTIR) emission spectroscopy. The O(3P) radicals are produced by 193 nm photolysis of an SO2 precursor or microwave discharge in O2. The HCCO radical is either formed in the first step of the C2H2 + O(3P) reaction or by 193 nm photodissociation of ethyl ethynyl ether. Vibrationally excited CO and CO2 products are observed. The microwave discharge experiment [C2H2 + O(3P)] shows a bimodal distribution of the CO(v) product, which is due to the sequential C2H2 + O(3P) and HCCO + O(3P) reactions. The vibrational distribution of CO(v) from the HCCO + O(3P) reaction also shows its own bimodal shape. The vibrational distribution of CO(v) from C2H2 + O(3P) can be characterized by a Boltzmann plot with a vibrational temperature of approximately 2400 +/- 100 K, in agreement with previous results. The CO distribution from the HCCO + O(3P) reaction, when studied under conditions to minimize other processes, shows very little contamination from other reactions, and the distribution can be characterized by a linear combination of Boltzmann plots with two vibrational temperatures: 2320 +/- 40 and 10 300 +/- 600 K. From the experimental results and previous theoretical work, the bimodal CO(v) distribution for the HCCO + O(3P) reaction suggests a sequential dissociation process of the HC(O)CO++ --> CO + HCO; HCO --> H + CO.  相似文献   

14.
The structures of hydrated 1-hydroxyanthraquinone complexes (1-HAQ), 1-HAQ(H2O)n=1,2, with intramolecular and intermolecular hydrogen bonding interactions were studied using laser spectroscopic methods such as laser induced fluorescence, fluorescence-detected infrared, infrared-visible hole burning, and visible-visible hole burning spectroscopy. In the 1:1 complex 1-HAQ(H2O)1, the water binds to the free carbonyl group of 1-HAQ not associated with intramolecular hydrogen bond. The second water in the 1:2 complex, 1-HAQ(H2O)2, binds to the first water of the 1:1 complex rather than other hydrogen bonding sites of 1-HAQ. A pair of two geometric isomers was produced in a supersonic jet for each of the 1:1 and 1:2 complexes. Both isomers of each complex have the same vibrational spectra in the region of the OH stretching vibration of water, but have different energies for the 0-0 band of vibronic transition due to the asymmetry of the two phenyl rings in 1-HAQ. The 0-0 bands for all four species of 1-HAQ(H2O)n=1,2 were unambiguously assigned by comparing with the results of ab initio calculations, which yielded the structures, vibrational frequencies, and relative energies of the frontier molecular orbitals.  相似文献   

15.
This report presents the preparation and characterization of H2OOO+, an important intermediate in water-oxygen chemistry. The H2OOO+ cation was produced by co-deposition of H2O/Ar with radio frequency discharged O2/Ar at 4 K and was identified by four fundamental infrared absorptions. Quantum chemical calculations indicate a doublet ground state with a H2O-O2 hemi-bonded Cs structure.  相似文献   

16.
When a Ne:H2:N2O mixture is co-deposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, NH2NO+ is stabilized in sufficient concentration for detection of five of its vibrational fundamentals. Their assignments are supported by isotopic substitution studies and by the results of unrestricted B3LYP/cc-pVTZ calculations. Electron recombination results in the stabilization of NH2NO, for which the previously reported argon-matrix assignments are confirmed and extended. The OH-stretching fundamental of NNOH+ also is present in the spectrum of the initial sample deposit, but because of proton sharing with the neon matrix is shifted 43.3 cm(-1) from the gas-phase band center. The OD-stretching fundamental of NNOD+ is identified for the first time in the present study. An absorption at 2311.1 cm(-1) is contributed by the NN-stretching vibration of a complex of N2, probably with an ionic species. On prolonged visible and near-ultraviolet irradiation of the deposit, absorptions of the binary N2...H2O complex become increasingly prominent.  相似文献   

17.
Spectroscopy and predissociation dynamics of (H2O)2 and Ar-H2O are investigated with vibrationally mediated dissociation (VMD) techniques, wherein upsilon(OH) = 2 overtones of the complexes are selectively prepared with direct infrared pumping, followed by 193 nm photolysis of the excited H2O molecules. As a function of relative laser timing, the photolysis breaks H2O into OH and H fragments either (i) directly inside the complex or (ii) after the complex undergoes vibrational predissociation, with the nascent quantum state distribution of the OH photofragment probed via laser-induced fluorescence. This capability provides the first rotationally resolved spectroscopic analysis of (H2O)2 in the first overtone region and vibrational predissociation dynamics of water dimer and Ar-water clusters. The sensitivity of the VMD approach permits several upsilon(OH) = 2 overtone bands to be observed, the spectroscopic assignment of which is discussed in the context of recent anharmonic theoretical calculations.  相似文献   

18.
The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperature have been investigated. High concentration studies of water (0.01%-4%) and subsequent annealing lead to the formation of the ternary CH3Cl:(H2O)2 complex. Detailed vibrational assignments were made on the observed spectra of water and deuterated water engaged in the complex. In parallel, structural, energetic, and vibrational properties of the complex have been studied at the second-order M?ller-Plesset perturbation theory using several basis sets. Anaharmonic correction to the vibrational frequencies has been done with the standard second-order perturbation approach. It was shown that the ground state of the complex has a cyclic form for which the nonadditive three-body contribution was found to be around 10% of the interaction energy.  相似文献   

19.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

20.
Mercury(II) hydroxide molecules have been prepared upon mercury arc lamp irradiation of Hg, H(2), and O(2) mixtures in solid neon and argon. The strongest three infrared absorptions are identified through isotopic substitution (D(2), HD, (18)O(2), (16)O(18)O) and comparison to frequencies from DFT calculations. The isolated Hg(OH)(2) molecule is stable and has a linear O-Hg-O linkage in a C(2) structure with an 86 degrees dihedral angle. However, in aqueous solution Hg(2+) and 2OH(-) may form an Hg(OH)(2) intermediate, which eliminates water and precipitates solid HgO: The solid Hg(OH)(2) compound is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号