首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

2.
The MISTRAL beamline is one of the seven phase‐I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi‐keV spectral regions for biological applications. The optics design consists of a plane‐grating monochromator that has been implemented using variable‐line‐spacing gratings to fulfil the requirements of X‐ray microscopy using a reflective condenser. For instance, a fixed‐focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.  相似文献   

3.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

4.
It is shown theoretically that the asymmetric or inclined double‐crystal X‐ray monochromator may be used for X‐ray pulse compression if the pulse is properly chirped. By adjusting the mutual distance of the two asymmetric or inclined crystals it should be possible to achieve even a sub‐femtosecond compression of a chirped free‐electron laser pulse. The small d‐spacing of the crystal enables a more compact scheme compared with the currently used grating compression scheme. The asymmetric cut of the crystal enables the acceptance of a larger bandwidth. The inclined cut has larger tunability.  相似文献   

5.
A detailed analysis of the effects of temperature excursions, instrumental mechanical motion and source position jitter on the energy‐resolving power of beamline 02B at the Shanghai Synchrotron Radiation Facility (SSRF) is presented in this study. This beamline uses a bending‐magnet‐based source and includes a variable‐line‐spacing grating monochromator with additional optics. Expressions are derived for the monochromator output photon energy shifts for each of the performance challenges considered. The calculated results indicate that measured temperature excursions of ±1 K produce an energy shift of less than 11% of the system's energy resolution. Mechanical displacements and vibrations measured at amplitudes of less than 0.5 µm produce changes of less than 5%, while measured source location jitter results in a change of less than 10%. Spectroscopic test experiments at 250 and 400 eV provide energy resolutions of over 104. This analysis, combined with the measured results, confirms the operational stability of the beamline, indicating that it meets the performance requirements for experimental use.  相似文献   

6.
Silicon saw‐tooth refractive lenses have been in successful use for vertical focusing and collimation of high‐energy X‐rays (50–100 keV) at the 1‐ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration‐free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single‐crystal material (i.e. Si) minimizes small‐angle scattering background. The focusing performance of such saw‐tooth lenses, used in conjunction with the 1‐ID beamline's bent double‐Laue monochromator, is presented for both short (~1:0.02) and long (~1:0.6) focal‐length geometries, giving line‐foci in the 2 µm–25 µm width range with 81 keV X‐rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short‐focal‐length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw‐tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small‐angular‐acceptance high‐energy‐resolution post‐monochromator in the 50–80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre‐monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance‐preserving to a very high degree.  相似文献   

7.
软X射线谱学显微光束线单色器结构设计及精度测试   总被引:2,自引:0,他引:2  
针对上海光源谱学显微光束线站的性能要求,对其核心部件单色器进行结构设计。阐述了单色器的扫描运动原理,论述了波长扫描机构的设计方案,具体分析平面镜和光栅的转角重复精度影响因素;描述光栅切换机构,着重分析其水平偏差、垂直偏差、滚角、摆角和投角的精度问题;采用六杆并联机构的方案完成镜箱调节机构的设计,分析其支杆的调节范围和分辨力情况。给出了单色器的结构,并且对其精度进行了测试。测试结果表明,平面镜和光栅的转角重复精度分别为0.166″和0.149″;光栅切换机构的滚角、摆角和投角的重复精度分别为0.08″、0.12″和0.05″。这说明了单色器的结构设计方案和机械精度满足技术要求。  相似文献   

8.
The research program at the biomedical imaging facility requires a high‐flux hard‐X‐ray monochromator that can also provide a wide beam. A wide energy range is needed for standard radiography, phase‐contrast imaging, K‐edge subtraction imaging and monochromatic beam therapy modalities. The double‐crystal Laue monochromator, developed for the BioMedical Imaging and Therapy facility, is optimized for the imaging of medium‐ and large‐scale samples at high energies with the resolution reaching 4 µm. A pair of 2 mm‐thick Si(111) bent Laue‐type crystals were used in fixed‐exit beam mode with a 16 mm vertical beam offset and the first crystal water‐cooled. The monochromator operates at energies from 25 to 150 keV, and the measured size of the beam is 189 mm (H) × 8.6 mm (V) at 55 m from the source. This paper presents our approach in developing a complete focusing model of the monochromator. The model uses mechanical properties of crystals and benders to obtain a finite‐element analysis of the complete assembly. The modeling results are compared and calibrated with experimental measurements. Using the developed analysis, a rough estimate of the bending radius and virtual focus (image) position of the first crystal can be made, which is also the real source for the second crystal. On the other hand, by measuring the beam height in several points in the SOE‐1 hutch, the virtual focus of the second crystal can be estimated. The focusing model was then calibrated with measured mechanical properties, the values for the force and torque applied to the crystals were corrected, and the actual operating parameters of the monochromator for fine‐tuning were provided.  相似文献   

9.
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results.  相似文献   

10.
A study of the coherence and wavefront properties of a pseudo‐channel‐cut monochromator in comparison with a double‐crystal monochromator is presented. Using a double‐grating interferometer designed for the hard X‐ray regime, the complex coherence factor was measured and the wavefront distortions at the sample position were analyzed. A transverse coherence length was found in the vertical direction that was a factor of two larger for the channel‐cut monochromator owing to its higher mechanical stability. The wavefront distortions after different optical elements in the beam, such as monochromators and mirrors, were also quantified. This work is particularly relevant for coherent diffraction imaging experiments with synchrotron sources.  相似文献   

11.
The design and commissioning of an inelastic X‐ray scattering instrument at CMC‐XOR at the Advanced Photon Source is reported. The instrument features a 2 m vertical‐scattering arm with a novel counterweight design to reduce the twisting moment as the arm is moved in the scattering plane. A Ge(733) spherical analyzer was fabricated and an overall resolution of 118 meV (FWHM) was obtained with a Si(444) monochromator and a Si(111) pre‐monochromator. Early results from a representative cuprate, La2CuO4, are reported.  相似文献   

12.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

13.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

14.
Refractive lenses focus X‐rays chromatically owing to a significant variation of the refractive index of the lens material with photon energy. Then, in combination with an exit slit in the focal plane, such lenses can be used as monochromators. The spectral resolution obtainable with refractive lenses based on prism arrays was recently systematically investigated experimentally. This contribution will show that a wide‐bandpass performance can be predicted with a rather simple analytical approach. Based on the good agreement with the experimental data, one can then more rapidly and systematically optimize the lens structure for a given application. This contribution will then discuss more flexible solutions for the monochromator operation. It will be shown that a new monochromator scheme could easily provide tuning in a fixed‐exit slit.  相似文献   

15.
凌青  吴刚  王秋平 《光学学报》2006,26(7):85-990
变间距全息光栅具有自聚焦和消像差功能,是高分辨率光谱仪与同步辐射单色器中的重要元件。研究了使用平面等间距光栅产生非球面波,记录平面变间距全息光栅的方法。根据几何光学的光线追迹理论,推导了光栅参量的四阶解析表达式。并基于费马原理,提出了记录光路的光线追迹数值算法。应用所推导的光栅参量四阶表达式,仿真设计了变间距全息光栅。通过合理选择记录参量,可以避免光栅基底受到零级及高阶衍射光场的影响。设计结果表明,理论光栅线密度与要求值相当符合;经光线追迹数值算法验证,解析表达式的展开误差在整个记录区域内小于1.5线;考虑到实际加工工艺允许误差,使用辅助光栅的记录光路对记录参量的误差并不敏感;设计实例证明了解析表达式的有效性,以及使用辅助光栅的记录光路的优越性。  相似文献   

16.
The sagittal‐bent Laue monochromator can provide an ideal way to focus high‐energy X‐ray beams. However, the anticlastic curvature induced by sagittal bending has a great influence on the crystal performance. Thus, characterizing the bent‐crystal shape is very important for predicting the performance of the bent‐crystal monochromator. In this paper the crystal profile is measured by off‐line optical metrology and on‐line X‐ray experiments. The off‐line results showed that the bent‐crystal surface could be well fitted to a saddle surface apart from a redundant cubic term which was related to the different couples applied on the crystal. On‐line characterization of the meridional and the sagittal radius of the bent crystal includes double‐crystal topography and ray‐tracing measurement. In addition, the double‐crystal topography experiment could be used as a quick diagnostic method for the bending condition adjustment. The sagittal radius of the bent crystal was characterized through a ray‐tracing experiment by using a particularly designed tungsten mask. Moreover, rocking curves under different bending conditions were measured as well. The results were highly consistent with analytical results derived from the elastic theory. Furthermore, radii along different vertical positions under various bending conditions were measured and showed a quadratic relationship between the vertical positions and the meridional radii.  相似文献   

17.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

18.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

19.
Deformation of the first crystal of an X‐ray monochromator under the heat load of a high‐power beam, commonly referred to as `heat bump', is a challenge frequently faced at synchrotron beamlines. Here, quantitative measurements of the deformations of an externally water‐cooled silicon (111) double‐crystal monochromator tuned to a photon energy of 17.6 keV are reported. These measurements were made using two‐dimensional hard X‐ray grating interferometry, a technique that enables in situ at‐wavelength wavefront investigations with high angular sensitivity. The observed crystal deformations were of the order of 100 nm in the meridional and 5 nm in the sagittal direction, which lead to wavefront slope errors of up to 4 µrad in the meridional and a few hundred nanoradians in the sagittal direction.  相似文献   

20.
Photonic jets are normally generated in transmission mode and are represented as a spatially localized high‐intensity region on the shadow side of a particle‐lens, with a background to medium refractive index contrast of 1.3–1.7 while illuminated by a plane wave. Here, a photonic jet is discovered in the opposing plane wave propagation direction and lies in the area in the upper boundary of a near‐unity refractive index sphere on a high refractive index dielectric substrate. The redistribution of the power flow is inhibited during the reflected wave passing the near‐unity refractive index sphere. This has led to a unique effect on the focus position and shape of the produced photonic jet in reflection mode which can be maximally maintained near the sphere regardless of the modulation of the refractive index for the dielectric substrate material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号