首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogel‐based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X‐ray attenuation of hydrogels, conventional radiography and micro‐computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X‐ray propagation‐based phase‐contrast imaging computed tomography (PCI‐CT) for three‐dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D‐printed into cardiac patches, with the pores filled by fibrin. The hydrogel patches were then surgically implanted on rat hearts. A week after surgery, the hearts including patches were excised and embedded in a soft‐tissue‐mimicking gel for imaging by using PCI‐CT at an X‐ray energy of 25 keV. During imaging, the sample‐to‐detector distances, CT‐scan time and the region of interest (ROI) were varied and examined for their effects on both imaging quality and radiation dose. The results showed that phase‐retrieved PCI‐CT images provided edge‐enhancement fringes at a sample‐to‐detector distance of 147 cm that enabled visualization of anatomical and microstructural features of the myocardium and the implanted patch in the tissue‐mimicking gel. For visualization of these features, PCI‐CT offered a significantly higher performance than the dual absorption‐phase and clinical magnetic resonance (3 T) imaging techniques. Furthermore, by reducing the total CT‐scan time and ROI, PCI‐CT was examined for lowering the effective dose, meanwhile without much loss of imaging quality. In effect, the higher soft tissue contrast and low‐dose potential of PCI‐CT has been used along with an acceptable overall animal dose to achieve the high spatial resolution needed for cardiac implant visualization. As a result, PCI‐CT at the identified imaging parameters offers great potential for 3D assessment of microstructural features of hydrogel cardiac patches.  相似文献   

2.
X‐ray phase‐contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex‐valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating‐based interferometry and propagation‐based phase contrast combined with single‐distance phase retrieval applied to a non‐homogeneous sample is presented (acquired at beamline ID19‐ESRF). It is shown that grating‐based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.  相似文献   

3.
The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase‐contrast X‐ray imaging of the airways and lungs of live small animals. Here, findings of the first live‐animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high‐resolution micro‐tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X‐rays at a range of sample‐to‐detector propagation distances. A frame rate of 100 frames s?1 allowed lung motion to be determined using X‐ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user‐directed display of relevant respiratory anatomy. The ability to perform X‐ray velocimetry on live mice at the IMBL was successfully demonstrated. High‐quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample‐to‐detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live‐animal imaging and high‐resolution micro‐tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.  相似文献   

4.
Propagation‐based phase‐contrast X‐ray imaging (PB‐PCXI) using synchrotron radiation has achieved high‐resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB‐PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source‐to‐sample distances of over 137 m. This study aimed to measure the capabilities of PB‐PCXI on IMBL for imaging small animal lungs to study lung disease. The feasibility of combining this technique with computed tomography for three‐dimensional imaging and X‐ray velocimetry for studies of airflow and non‐invasive lung function testing was also investigated. Detailed analysis of the role of the effective source size and sample‐to‐detector distance on lung image contrast was undertaken as well as phase retrieval for sample volume analysis. Results showed that PB‐PCXI of lung phantoms and mouse lungs produced high‐contrast images, with successful computed tomography and velocimetry also being carried out, suggesting that live animal lung imaging will also be feasible at the IMBL.  相似文献   

5.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

6.
Phase‐contrast X‐ray imaging using a paper analyzer enables the visualization of X‐ray transparent biological structures using the refractive properties of the sample. The technique measures the sample‐induced distortions of a spatially random reference pattern to retrieve quantitative sample information. This phase‐contrast method is promising for biomedical application due to both a simple experimental set‐up and a capability for real‐time imaging. The authors explore the experimental configuration required to achieve robustness and accuracy in terms of (i) the paper analyzer feature size, (ii) the sample‐to‐detector distance, and (iii) the exposure time. Results using a synchrotron source confirm that the technique achieves accurate phase retrieval with a range of paper analyzers and at exposures as short as 0.5 ms. These exposure times are sufficiently short relative to characteristic physiological timescales to enable real‐time dynamic imaging of living samples. A theoretical guide to the choice of sample‐to‐detector distance is also derived. While the measurements are specific to the set‐up, these guidelines, the example speckle images, the strategies for analysis in the presence of noise and the experimental considerations and discussion will be of value to those who wish to use the speckle‐tracking paper analyzer technique.  相似文献   

7.
Synchrotron‐radiation computed tomography has been applied in many research fields. Here, PITRE (Phase‐sensitive X‐ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation‐based phase‐contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel‐beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI‐CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created viaPITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user‐friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data‐processing principle and some examples of application will be presented.  相似文献   

8.
Synchrotron radiation inline phase‐contrast imaging combined with computed tomography (SR‐inline‐PCI‐CT) offers great potential for non‐invasive characterization and three‐dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption‐based imaging techniques. For example, three‐dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline‐PCI‐CT for visualizing the components of three‐dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis using Alcian blue staining and immunofluorescent staining assessed the secretion of sulfated glycosaminoglycan (GAGs) and collagen type II (Col2) in the cell‐laden hybrid constructs over time. Second, optimization of inline PCI‐CT was performed by investigating three sample‐to‐detector distances (SDD): 0.25, 1 and 3 m. Then, the optimal SDD was utilized to visualize structural changes in the constructs over a 42‐day culture period. The results showed that there was progressive secretion of cartilage‐specific ECM by ATDC5 cells in the hybrid constructs over time. An SDD of 3 m provided edge‐enhancement fringes that enabled simultaneous visualization of all components of hybrid constructs in aqueous solution. Structural changes that might reflect formation of ECM also were evident in SR‐inline‐PCI‐CT images. Summarily, SR‐inline‐PCI‐CT images captured at the optimized SDD enables visualization of the different components in hybrid cartilage constructs over a 42‐day culture period.  相似文献   

9.
The Pixium 4700 detector represents a significant step forward in detector technology for high‐energy X‐ray diffraction. The detector design is based on digital flat‐panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 × 2480 pixels with a pixel size of 154 µm × 154 µm, and thus it covers an effective area of 294 mm × 379 mm. Designed for medical imaging, the detector has good efficiency at high X‐ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high‐energy X‐ray diffraction are presented. Quantitative comparisons with a widespread high‐energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point‐spread function and distortion‐free image, allows for the acquisition of high‐quality diffraction data at high X‐ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.  相似文献   

10.
Phase‐contrast imaging provides enhanced image contrast and is important for non‐destructive evaluation of structural materials. In this paper, experimental results on in‐line phase‐contrast imaging using a synchrotron source (ELETTRA, Italy) for objects required in material science applications are discussed. Experiments have been carried out on two types of samples, pyrocarbon‐coated zirconia and pyrocarbon‐coated alumina microspheres. These have applications in both reactor and industrial fields. The phase‐contrast imaging technique is found to be very useful in visualizing and determining the coating thickness of pyrocarbon on zirconia and alumina microspheres. The experiments were carried out at X‐ray energies of 16, 18 and 20 keV and different object‐to‐detector distances. The results describe the contrast values and signal‐to‐noise ratio for both samples. A comprehensive study was carried out to determine the thickness of the pyrocarbon coating on zirconia and alumina microspheres of diameter 500 µm. The advantages of phase‐contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The results show considerable improvement in contrast with phase‐contrast imaging as compared with absorption radiography.  相似文献   

11.
Many published literature sources have described the histopathological characteristics of post‐traumatic syringomyelia (PTS). However, three‐dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation‐based synchrotron radiation microtomography (PB‐SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB‐SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB‐SRµCT imaging. The quantitative parameters analyzed by PB‐SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB‐SRµCT images. This study demonstrated that high‐resolution PB‐SRµCT could be used for the 3D visualization of trauma‐induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB‐SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.  相似文献   

12.
In this work an X‐ray imaging system based on a recently developed in‐line two‐dimensional Bragg magnifier composed of two monolithic V‐shaped crystals made of dislocation‐free germanium is presented. The channel‐cut crystals were used in one‐dimensional and in two‐dimensional (crossed) configurations in imaging applications and allowed measurement of phase‐contrast radiograms both in the edge‐enhanced and in the holographic regimes. The measurement of the phase gradient in two orthogonal directions is demonstrated. The effective pixel size attained was 0.17 µm in the one‐dimensional configuration and 0.5 µm in the two‐dimensional setting, offering a twofold improvement in spatial resolution over devices based on silicon. These results show the potential for applying Bragg magnifiers to imaging soft matter at high resolution with reduced dose owing to the higher efficiency of Ge compared with Si.  相似文献   

13.
The first imaging results obtained from a small‐size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X‐rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating‐based differential phase‐contrast imaging method.  相似文献   

14.
Phase‐sensitive X‐ray imaging methods can provide substantially increased contrast over conventional absorption‐based imaging, and therefore new and otherwise inaccessible information. Differential phase‐contrast (DPC) imaging, which uses a grating interferometer and a phase‐stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post‐processing of data to enable a high‐throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample. A novel aquarium design allows a vertical rotation axis below the sample with measurements performed in aqueous environment. Optimization of the data acquisition procedure enables a full phase volume (1024 × 1024 pixels × 1000 projections × 9 phase steps, i.e. 9000 projections in total) to be acquired in 20 min (with a pixel size of 7.4 µm), and the subsequent post‐processing has been integrated into the beamline pipeline for sinogram generation. Local DPC tomography allows one to focus with higher magnification on a particular region of interest of a sample without the presence of local tomography reconstruction artifacts. Furthermore, `widefield' imaging is shown for DPC scans for the first time, enabling the field of view of the imaging system to be doubled for samples that are larger than the magnification allows. A case study is illustrated focusing on the visualization of soft tissue features, and particularly the substantia nigra of a rat brain. Darkfield images, based on local X‐ray scattering, can also be extracted from a grating‐based DPC scan: an example of the advantages of darkfield contrast is shown and the potential of darkfield X‐ray tomography is discussed.  相似文献   

15.
X‐ray analyzer‐based phase‐contrast imaging is combined with computed laminography for imaging regions of interest in laterally extended flat specimens of weak absorption contrast. The optics discussed here consist of an asymmetrically cut collimator crystal and a symmetrically cut analyzer crystal arranged in a nondispersive (+, ?) diffraction geometry. A generalized algorithm is given for calculating multi‐contrast (absorption, refraction and phase contrast) images of a sample. Basic formulae are also presented for laminographic reconstruction. The feasibility of the method discussed was verified at the vertical wiggler beamline BL‐14B of the Photon Factory. At a wavelength of 0.0733 nm, phase‐contrast sectional images of plastic beads were successfully obtained. Owing to strong circular artifacts caused by a sample holder, the field of view was limited to about 6 mm in diameter.  相似文献   

16.
Synchrotron‐based X‐ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high‐temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro‐ and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40–100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation‐based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non‐operating fuel cell. The non‐destructive imaging methodology was verified by comparing image‐based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.  相似文献   

17.
The first monochromatic X‐ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X‐ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point‐spread function for the X‐ray imaging system and harmonic contamination of the X‐ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X‐ray spectrum prior to monochromatization, allowance for the response of the double‐crystal Si monochromator used (via X‐ray dynamical theory), as well as a thorough assessment of the role of X‐ray phase‐contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point‐spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X‐ray tomography data, across a wide range of disciplines, including materials and life sciences.  相似文献   

18.
The detection system is a key part of any imaging station. Here the performance of the novel sCMOS‐based detection system installed at the ID17 biomedical beamline of the European Synchrotron Radiation Facility and dedicated to high‐resolution computed‐tomography imaging is analysed. The system consists of an X‐ray–visible‐light converter, a visible‐light optics and a PCO.Edge5.5 sCMOS detector. Measurements of the optical characteristics, the linearity of the system, the detection lag, the modulation transfer function, the normalized power spectrum, the detective quantum efficiency and the photon transfer curve are presented and discussed. The study was carried out at two different X‐ray energies (35 and 50 keV) using both 2× and 1× optical magnification systems. The final pixel size resulted in 3.1 and 6.2 µm, respectively. The measured characteristic parameters of the PCO.Edge5.5 are in good agreement with the manufacturer specifications. Fast imaging can be achieved using this detection system, but at the price of unavoidable losses in terms of image quality. The way in which the X‐ray beam inhomogeneity limited some of the performances of the system is also discussed.  相似文献   

19.
The Compact Light Source is a miniature synchrotron producing X‐rays at the interaction point of a counter‐propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X‐rays can be exploited in high‐sensitivity differential phase‐contrast imaging with a grating‐based interferometer. Here, the first multimodal X‐ray imaging experiments at the Compact Light Source at a clinically compatible X‐ray energy of 21 keV are reported. Dose‐compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark‐field imaging over conventional attenuation‐based projections.  相似文献   

20.
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号