共查询到7条相似文献,搜索用时 15 毫秒
1.
Densification of sol–gel silica thin films induced by hard X‐rays generated by synchrotron radiation
Plinio Innocenzi Luca Malfatti Tongjit Kidchob Stefano Costacurta Paolo Falcaro Benedetta Marmiroli Fernando Cacho‐Nerin Heinz Amenitsch 《Journal of synchrotron radiation》2011,18(2):280-286
In this article the effects induced by exposure of sol–gel thin films to hard X‐rays have been studied. Thin films of silica and hybrid organic–inorganic silica have been prepared via dip‐coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X‐ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si—C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X‐rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions. 相似文献
2.
Polycrystalline BiFeO3 (BFO) thin films were successfully grown on Pt/Ti/SiO2/Si(100) and SrTiO3 (STO) (100) substrates using the chemical solution deposition (CSD) technique. X‐ray diffraction (XRD) patterns indicate the polycrystalline nature of the films with rhombohedrally distorted perovskite crystal structure. Differential thermal analysis (DTA) was performed on the sol–gel‐derived powder to countercheck the crystal structure, ferroelectric (FE) to paraelectric (PE) phase transition, and melting point of bismuth ferrite. We observed a significant exothermic peak at 840 °C in DTA graphs, which corresponds to an FE–PE phase transition. Raman spectroscopy studies were carried out on BFO thin films prepared on both the substrates over a wide range of temperature. The room‐temperature unpolarized Raman spectra of BFO thin films indicate the presence of 13 Raman active modes, of which five strong modes were in the low‐wavenumber region and eight weak Raman active modes above 250 cm−1. We observed slight shifts in the lower wavenumbers towards lower values with increase in temperature. The temperature‐dependent Raman spectra indicate a complete disappearance of all Raman active modes at 840 °C corresponding to the FE–PE phase transitions. There is no evidence of soft mode phonons. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
3.
Raman spectra of TiO2 films prepared via the sol–gel process were studied by UV and visible Raman spectroscopy. The evolution of the phases of TiO2 films during annealing was investigated, and the relative intensities of the Raman bands excited with 325 nm were found to be distinct from those of the bands excited with 514 nm. The transmittance and FTIR spectra of the films annealed at different temperatures were characterized. The crystallization process of the powders and thin films treated by different annealing methods were also studied with Raman spectroscopy. The results show that the change in the relative intensities is caused by the resonance Raman effect. The anatase to rutile transition of the powder occurs at 700 °C, while that of the thin film occurs at 800 °C. The analysis of Raman band shape (peak position and full width at half‐maximum) after conventional furnace annealing and rapid thermal annealing indicates the influence of the non‐stoichiometry and phonon confinement effect. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
R. Thangavel Rakesh Singh Moirangthem Wei‐Shan Lee Yia‐Chung Chang Pei‐Kuen Wei J. Kumar 《Journal of Raman spectroscopy : JRS》2010,41(12):1594-1600
Undoped and cesium‐doped zinc oxide (ZnO) thin films have been deposited on sapphire substrate (0001) using the sol–gel method. Films were preheated at 300 °C for 10 min and annealed at 600 and 800 °C for 1 h. The grown thin films were confirmed to be of wurtzite structure using X‐ray diffraction. Surface morphology of the films was analyzed using scanning electron microscopy. The photoluminescence (PL) spectra of ZnO showed a strong ultraviolet (UV) emission band located at 3.263 eV and a very weak visible emission associated with deep‐level defects. Cesium incorporation induced a blue shift of the optical band gap and quenching of the near‐band‐edge PL for nanocrystalline thin film at room temperatures because of the band‐filling effect of free carriers. A shift of about 10–15 cm−1 is observed for the first‐order longitudinal‐optical (LO) phonon Raman peak of the nanocrystals when compared to the LO phonon peak of bulk ZnO. The UV resonant Raman excitation at RT shows multiphonon LO modes up to fifth order. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Preferentially, c-axis-oriented lithium-doped zinc oxide (ZnO:Li) thin films were prepared on Pyrex borosilicate glass substrates by a sol–gel method starting from zinc acetate dihydrate, lithium chloride, 2-methoxyethanol and monoethanolamine. Decomposition and crystallization behavior of dip-coated amorphous precursor films during post-annealing treatments were investigated by thermogravimetry–differential thermal analysis (TG–DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance measurements, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). It was revealed that the films contained the organic compounds at temperatures up to 300°C, which was the key to the transformation from the amorphous to the crystalline state. Thermodynamical consideration of nucleation and crystal growth was made taking account of surface energies of the film and the glass substrate and an interfacial energy between them. Mechanisms underlying the c-axis orientation were proposed based upon the initial orientation due to nucleation and final growth orientation. 相似文献
6.
In situ synchrotron X‐ray diffraction analysis of deformation behaviour in Ti–Ni‐based thin films 下载免费PDF全文
Hong Wang Guangai Sun Xiaolin Wang Bo Chen Xiaotao Zu Yanping Liu Liangbin Li Guoqiang Pan Liusi Sheng Yaoguang Liu Yong Qing Fu 《Journal of synchrotron radiation》2015,22(1):34-41
Deformation mechanisms of as‐deposited and post‐annealed Ti50.2Ni49.6, Ti50.3Ni46.2Cu3.5 and Ti48.5Ni40.8Cu7.5 thin films were investigated using the in situ synchrotron X‐ray diffraction technique. Results showed that initial crystalline phases determined the deformation mechanisms of all the films during tensile loading. For the films dominated by monoclinic martensites (B19′), tensile stress induced the detwinning of 〈011〉 type‐II twins and resulted in the preferred orientations of (002)B19′ parallel to the loading direction (∥ LD) and (020)B19′ perpendicular to the LD (⊥ LD). For the films dominated by austenite (B2), the austenite directly transformed into martensitic variants (B19′) with preferred orientations of (002)B19′ ∥ LD and (020)B19′ ⊥ LD. For the Ti50.3Ni46.2Cu3.5 and Ti48.1Ni40.8Cu7.5 films, martensitic transformation temperatures decreased apparently after post‐annealing because of the large thermal stress generated in the films due to the large differences in thermal expansion coefficients between the film and substrate. 相似文献
7.
Somsubhra Saha Manash Ghosh Bipan Dutta Joydeep Chowdhury 《Journal of Raman spectroscopy : JRS》2016,47(2):168-176
Highly sensitive surface‐enhanced Raman scattering active substrate obtained by self‐assembly of silver nanocolloids (AgNCs) in the bilayer Langmuir–Blodgett (LB) film of stearic acid (SA) has been reported. Rhodamine 6G (R6G) has been used as the probe molecule to test the efficacy of the as prepared substrate. Gigantic enhancement factors ~1012 orders of magnitude have been estimated from the surface‐enhanced resonance Raman scattering [SER(R) S] spectrum of R6G, which proves that the as prepared substrate is superior or comparable with silver nanoparticle as dried AgNC solutions on microscopic slides. The optical properties of the as prepared substrates have been envisaged by ultraviolet‐visible absorption spectra, while their morphological features are mapped through field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images. A correlation has been drawn between the SER(R) S efficacy and the corresponding FESEM and AFM images of the as prepared substrates. Electric field distributions around the aggregated AgNCs have been estimated with the aid of three‐dimensional finite difference time domain simulation studies. Localized surface plasmon coupling between the nanoaggregated geometries may be altered by lifting the LB film of SA at various surface pressures. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献