首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preoperative portal vein embolization (PVE) is employed clinically to avoid postoperative liver insufficiency. Animal models are usually used to study PVE in terms of mechanisms and pathophysiological changes. PVE is formerly monitored by conventional absorption contrast imaging (ACI) with iodine contrast agent. However, the side effects induced by iodine can give rise to animal damage and death. In this study, the feasibility of using phase contrast imaging (PCI) to show PVE using homemade CO2 microbubbles in living rats has been investigated. CO2 gas was first formed from the reaction between citric acid and sodium bicarbonate. The CO2 gas was then encapsulated by egg white to fabricate CO2 microbubbles. ACI and PCI of CO2 microbubbles were performed and compared in vitro. An additional increase in contrast was detected in PCI. PCI showed that CO2 microbubbles gradually dissolved over time, and the remaining CO2 microbubbles became larger. By PCI, the CO2 microbubbles were found to have certain stability, suggesting their potential use as embolic agents. CO2 microbubbles were injected into the main portal trunk to perform PVE in living rats. PCI exploited the differences in the refractive index and facilitated clear visualization of the PVE after the injection of CO2 microbubbles. Findings from this study suggest that homemade CO2 microbubbles‐based PCI is a novel modality for preclinical PVE research.  相似文献   

2.
Using a two‐crystal‐interferometer‐based phase‐contrast X‐ray imaging system, the portal vein, capillary vessel area and hepatic vein of live rats were revealed sequentially by injecting physiological saline via the portal vein. Vessels greater than 0.06 mm in diameter were clearly shown with low levels of X‐rays (552 µGy). This suggests that in vivo vessel imaging of small animals can be performed as conventional angiography without the side effects of the presently used iodine contrast agents.  相似文献   

3.
Phase‐contrast X‐ray imaging using a paper analyzer enables the visualization of X‐ray transparent biological structures using the refractive properties of the sample. The technique measures the sample‐induced distortions of a spatially random reference pattern to retrieve quantitative sample information. This phase‐contrast method is promising for biomedical application due to both a simple experimental set‐up and a capability for real‐time imaging. The authors explore the experimental configuration required to achieve robustness and accuracy in terms of (i) the paper analyzer feature size, (ii) the sample‐to‐detector distance, and (iii) the exposure time. Results using a synchrotron source confirm that the technique achieves accurate phase retrieval with a range of paper analyzers and at exposures as short as 0.5 ms. These exposure times are sufficiently short relative to characteristic physiological timescales to enable real‐time dynamic imaging of living samples. A theoretical guide to the choice of sample‐to‐detector distance is also derived. While the measurements are specific to the set‐up, these guidelines, the example speckle images, the strategies for analysis in the presence of noise and the experimental considerations and discussion will be of value to those who wish to use the speckle‐tracking paper analyzer technique.  相似文献   

4.
X‐ray phase‐contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex‐valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating‐based interferometry and propagation‐based phase contrast combined with single‐distance phase retrieval applied to a non‐homogeneous sample is presented (acquired at beamline ID19‐ESRF). It is shown that grating‐based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.  相似文献   

5.
The first imaging results obtained from a small‐size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X‐rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating‐based differential phase‐contrast imaging method.  相似文献   

6.
Phase‐sensitive X‐ray imaging methods can provide substantially increased contrast over conventional absorption‐based imaging, and therefore new and otherwise inaccessible information. Differential phase‐contrast (DPC) imaging, which uses a grating interferometer and a phase‐stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post‐processing of data to enable a high‐throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample. A novel aquarium design allows a vertical rotation axis below the sample with measurements performed in aqueous environment. Optimization of the data acquisition procedure enables a full phase volume (1024 × 1024 pixels × 1000 projections × 9 phase steps, i.e. 9000 projections in total) to be acquired in 20 min (with a pixel size of 7.4 µm), and the subsequent post‐processing has been integrated into the beamline pipeline for sinogram generation. Local DPC tomography allows one to focus with higher magnification on a particular region of interest of a sample without the presence of local tomography reconstruction artifacts. Furthermore, `widefield' imaging is shown for DPC scans for the first time, enabling the field of view of the imaging system to be doubled for samples that are larger than the magnification allows. A case study is illustrated focusing on the visualization of soft tissue features, and particularly the substantia nigra of a rat brain. Darkfield images, based on local X‐ray scattering, can also be extracted from a grating‐based DPC scan: an example of the advantages of darkfield contrast is shown and the potential of darkfield X‐ray tomography is discussed.  相似文献   

7.
X-ray phase-contrast imaging has emerged as an important method for improving contrast and sensitivity in the field of X-ray imaging. This increase in the sensitivity is attributed to the fact that, in the hard X-ray regime, the phase shift is more prominent as compared with the attenuation for materials having a low X-ray absorption coefficient. Among all the methods using the X-ray phase-contrast technique, in-line phase-contrast imaging scores over the other methods in terms of ease of implementation and efficient use of available X-ray flux. In order to retrieve the projected phase map of the object from the recorded intensity pattern, a large number of algorithms have been proposed. These algorithms generally use either the transport of intensity or contrast transfer function based approach for phase retrieval. In this paper it is proposed to use multiple wavelengths for phase retrieval using the contrast transfer function based formalism.  相似文献   

8.
X‐ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross‐correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross‐correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced‐dose, more rapidly acquired, fluorescence nanotomography experiments.  相似文献   

9.
10.
In recent years, increasing attention has been devoted to X‐ray phase contrast imaging, since it can provide high‐contrast images by using phase variations. Among the different existing techniques, Zernike phase contrast microscopy is one of the most popular phase‐sensitive techniques for investigating the fine structure of the sample at high spatial resolution. In X‐ray Zernike phase contrast microscopy, the image contrast is indeed a mixture of absorption and phase contrast. Therefore, this technique just provides qualitative information on the object, which makes the interpretation of the image difficult. In this contribution, an approach is proposed for quantitative phase retrieval in X‐ray Zernike phase contrast microscopy. By shifting the phase of the direct light by π/2 and 3π/2, two images of the same object are measured successively. The phase information of the object can then be quantitatively retrieved by a proper combination of the measured images. Numerical experiments were carried out and the results confirmed the feasibility of the proposed method. It is expected that the proposed method will find widespread applications in biology, materials science and so on.  相似文献   

11.
X‐ray analyzer‐based phase‐contrast imaging is combined with computed laminography for imaging regions of interest in laterally extended flat specimens of weak absorption contrast. The optics discussed here consist of an asymmetrically cut collimator crystal and a symmetrically cut analyzer crystal arranged in a nondispersive (+, ?) diffraction geometry. A generalized algorithm is given for calculating multi‐contrast (absorption, refraction and phase contrast) images of a sample. Basic formulae are also presented for laminographic reconstruction. The feasibility of the method discussed was verified at the vertical wiggler beamline BL‐14B of the Photon Factory. At a wavelength of 0.0733 nm, phase‐contrast sectional images of plastic beads were successfully obtained. Owing to strong circular artifacts caused by a sample holder, the field of view was limited to about 6 mm in diameter.  相似文献   

12.
An X‐ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption‐based micro‐computed tomography, this set‐up has shown much better soft tissue imaging capability. In particular, using the set‐up, the carotid artery and the carotid vein in a formalin‐fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set‐up for biomedical imaging applications at SSRF.  相似文献   

13.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

14.
The electron density resolution of synchrotron‐radiation phase‐contrast imaging (SR‐PCI) is 1000 times higher than that of conventional X‐ray absorption imaging in light elements, through which high‐resolution X‐ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR‐PCI can give better imaging contrast than conventional X‐ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in‐line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50–70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR‐PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross‐sectional imaging. In conclusion, SR‐PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X‐ray absorption imaging, which prompt the X‐ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.  相似文献   

15.
X‐ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X‐rays is necessary for three‐dimensional structural studies of thick specimens with high‐Z elements. In this paper it is shown that full‐field X‐ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full‐field Zernike phase‐contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X‐ray energies between 2.5 keV and 4 keV is expected.  相似文献   

16.
Jie Wu 《Optik》2013,124(24):6523-6525
Based on the propagation X ray phase contrast imaging theory, a spatial domain constraint iterative phase retrieval method is described in detail. This algorithm limits the object spatial domain according to the actual sample size firstly, and modify the image plane data with the actual test data, then the iteration can be terminated until iteration precision or the number of iterations meet the preset requirements. Finally the numerical simulation is made to evaluate the rapid phase retrieval algorithm performance, and a real column fiber material experiment is carried out using a micro focus X ray phase contrast imaging experiment platform, the phase distribution image of the column fiber is calculated out by this algorithm. The results show that this phase retrieval algorithm is effective, and the method has a potential stability and accuracy for X ray phase contrast imaging technology.  相似文献   

17.
The efficiency of high‐resolution pixel detectors for hard X‐rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron‐based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency: a novel scintillator based on doped Lu2SiO5 (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO‐based thin crystal together with the high stopping power of the material allows for high‐performance indirect X‐ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible‐light and the afterglow are investigated. A set‐up to study the effect of the thin‐film scintillator's temperature on its conversion efficiency is described as well. It delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X‐ray imaging systems based on different diffraction‐limited visible‐light optics and CCD cameras using among others LSO‐based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high‐resolution computed tomography for life sciences.  相似文献   

18.
The understanding of and in situ observation of the transport and distribution of water in carbon‐paper gas diffusion layers (GDLs) using non‐destructive imaging techniques is critical for achieving high performance in polymer electrolyte fuel cells (PEFCs). To investigate the behavior of water in GDLs of PEFCs, phase‐contrast X‐ray imaging via X‐ray interferometric imaging (XII) and diffraction‐enhanced imaging (DEI) were performed using 35 keV X‐rays. The XII technique is useful for the radiographic imaging of GDLs and in situ observations of water evolution processes in operating PEFCs. DEI provides a way for tomographic imaging of GDLs in PEFCs. Because high‐energy X‐rays are applicable to the imaging of both carbon papers and heavy materials, which make up PEFCs, phase‐contrast X‐ray imaging techniques have proven to be valuable for investigation of GDLs.  相似文献   

19.
A full‐field hard X‐ray imaging beamline (BL‐4) was designed, developed, installed and commissioned recently at the Indus‐2 synchrotron radiation source at RRCAT, Indore, India. The bending‐magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high‐resolution radiography, propagation‐ and analyzer‐based phase contrast imaging, real‐time imaging, absorption and phase contrast tomography etc. First experiments on propagation‐based phase contrast imaging and micro‐tomography are reported.  相似文献   

20.
Many spinal cord circulatory disorders present the substantial involvement of small vessel lesions. The central sulcus arteries supply nutrition to a large part of the spinal cord, and, if not detected early, lesions in the spinal cord will cause irreversible damage to the function of this organ. Thus, early detection of these small vessel lesions could potentially facilitate the effective diagnosis and treatment of these diseases. However, the detection of such small vessels is beyond the capability of current imaging techniques. In this study, an imaging method is proposed and the potential of phase‐contrast imaging (PCI)‐ and attenuation‐contrast imaging (ACI)‐based synchrotron radiation for high‐resolution tomography of intramedullary arteries in mouse spinal cord is validated. The three‐dimensional vessel morphology, particularly that of the central sulcus arteries (CSA), detected with these two imaging models was quantitatively analyzed and compared. It was determined that both PCI‐ and ACI‐based synchrotron radiation can be used to visualize the physiological arrangement of the entire intramedullary artery network in the mouse spinal cord in both two dimensions and three dimensions at a high‐resolution scale. Additionally, the two‐dimensional and three‐dimensional vessel morphometric parameter measurements obtained with PCI are similar to the ACI data. Furthermore, PCI allows efficient and direct discrimination of the same branch level of the CSA without contrast agent injection and is expected to provide reliable biological information regarding the intramedullary artery. Compared with ACI, PCI might be a novel imaging method that offers a powerful imaging platform for evaluating pathological changes in small vessels and may also allow better clarification of their role in neurovascular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号