首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Pb can pass through the food chain via plants and threaten human health, which has attracted widespread attention. Changes in Pb speciation affect its bioavailability in soils and water. However, whether organic ligands can change the uptake and mobility of Pb in plants and increase or decrease Pb bioavailability remains uncertain. To reveal the roles of organic and inorganic Pb in Pb metabolism in plants, the localization and speciation changes of Pb in Arabidopsis thaliana plants grown in organic and inorganic Pb were characterized by synchrotron radiation micro X‐ray fluorescence and X‐ray absorption near‐edge structure, respectively. These results demonstrated that Arabidopsis absorbed more Pb from Pb(NO3)2 than Pb(CH3COO)2 at the same exposure concentration. A higher percentage of Pb‐citrate was found in Arabidopsis exposed to inorganic Pb solution, which suggested that Pb‐citrate was the main complex for root‐to‐shoot transportation in Arabidopsis exposed to inorganic Pb solutions. Pb complexed with the organic ligand CH3COO? significantly inhibited primary root growth and lateral root development, while, at the same time, Pb was blocked by root hairs, which represented another way to reduce Pb absorption and protect the plant from biotoxicity.  相似文献   

2.
This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X‐ray microfluorescence, synchrotron transmission X‐ray microscope measurement and synchrotron X‐ray absorption near‐edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.  相似文献   

3.
57Fe Mössbauer spectroscopy was used to study the uptake and distribution of iron in the root of cucumber plants grown in iron-deficient modified Hoagland nutrient solution and put into iron-containing solution with 10 μM Fe citrate enriched with 57Fe (90%) only before harvesting. The Mössbauer spectra of the frozen roots exhibited two Fe3+ components with typical average Mössbauer parameters of δ?=?0.5 mm s?1, Δ?=?0.46 mm s?1 and δ?=?0.5 mm s?1, Δ?=?1.2 mm s?1 at 78 K and the presence of an Fe2+ doublet, assigned to the ferrous hexaaqua complex. This finding gives a direct evidence for the existence of Fe2+ ions produced via root-associated reduction according to the mechanism proposed for iron uptake for dicotyledonous plants. Monotonous changes in the relative content of the components were found with the time period of iron supply. The Mössbauer results are interpreted in terms of iron uptake and transport through the cell wall and membranes.  相似文献   

4.
By means of the energy loss near edge structure (ELNES) analysis, the electronic structures of layered transition metal disulfides were studied. In the framework of full potential linearized augmented plane wave method, ELNES spectra of sulfur K and L2,3 edges of layered MoS2, WS2 and ReS2 have been calculated at magic angle conditions, and compared with those of bulks and the only existing experimental fine structure. Compared to the bulks, the energy differences between the main peaks in sulfur K and L2,3 edges of monolayers decrease due to the slightly larger bond lengths that it can be used as a fingerprint for monolayers. Sulfur K edges in monolayers include some main features originated from electron transition to pz (π) and px+py (σ) states and their hybridization. The overall dispersions of the sulfur L2,3 edges in all cases are similar to the d-symmetry density of states. The first two features in L2,3 edge of bulks and monolayers can be attributed to electron transition of sulfur 2p to the both unoccupied 3s-like states of sulfur and 4d states of transition metal atoms. Due to the considerable amount of s states at the energy position of a shoulder like structure in L2,3 edge of both bulks and monolayers, these structures can be assigned to the sulfur 2p electron transition to unoccupied sulfur 3s states. The other features at higher energies are due to the transition of sulfur 2p electrons to the d-symmetry states of sulfur. In addition, due to the considerable energy band gaps, it seems that the use of core–hole approximation is essential for accurate reproduction of ELNES features of transition metal disulfides.  相似文献   

5.
Based on clinical trials showing the efficacy to reduce vertebral and non‐vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr administration, SrR versus strontium chloride (SrCl2). Three‐month‐old ovariectomized rats were treated for 90 days with doses of 25 mg kg?1 d?1 and 150 mg kg?1 d?1 of SrR or SrCl2 at low (0.1% Ca) or normal (1.19% Ca) Ca diet. Vertebral bone tissue was analysed by confocal synchrotron‐radiation‐induced micro X‐ray fluorescence and by backscattered electron imaging. Principal component analysis and k‐means clustering of the acquired elemental maps of Ca and Sr revealed that the newly formed bone exhibited the highest Sr fractions and that low Ca diet increased the Sr uptake by a factor of three to four. Furthermore, Sr uptake in bone of the SrCl2‐treated animals was generally lower compared with SrR. The study clearly shows that inadequate nutritional calcium intake significantly increases uptake of Sr in serum as well as in trabecular bone matrix. This indicates that nutritional calcium intake as well as serum Ca levels are important regulators of any Sr treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号