首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supersonic jet expansions of mixtures of nitric oxide with either nitrous oxide or carbon dioxide have been investigated over a wide range of relative concentrations. Mixed molecular cluster ions of the form (NO) m + (N2O)n and (NO) m + (CO2)n are detected following non-resonant two-photon ionization. Over a wide range of intermediate concentrations, the cluster ion distributions (NO) 3 + (N2O)n and (NO) 3 + (CO2)n with n30 are significantly more intense than clusters containing other numbers of nitric oxide molecules. The extra abundance of these species is attributed to their especially stable structures and several possible forms are discussed. An intriguing possibility involves a stable cyclic nitric oxide trimer (or ion) when combined with nitrous oxide or carbon dioxide clusters.  相似文献   

2.
Data are presented which strongly suggest that stabilisation of the excited intermediate (N4+)* complex in the reaction (1) N2+ + 2N2 (rate coefficient k1) occurs via N2 switching whereas for (2) N2+ + N2 + He (rate coefficient k2) it occurs via superelastic He collisions. This explains the differing temperature variations of k1 and k2 previously obtained for these reactions. Drift tube data are also presented which show how k1 varies with N2+/N2 centre-of-mass energy as compared with thermal energy.  相似文献   

3.
A value of (9.3 ± 1.7) × 10?15 cm3 molecule ?1 has been determined as the rate constant for the quenching of O2(A 3Σu+) by N2 at 25°C.  相似文献   

4.
A beam of state-selected NO molecules (J = Ω = 32) has been produced by an electrostatic hexapole and has been collided with O3 molecules in a scattering chamber. The E-field dependence of the chemiluminescent cross section, σhr, has been investigated and resulted in the determination of the M-dependence of σhr: σhr (M)/σ0 = 1.192±0.009, 0.0848±0.015, 1.177±0.015, 0.783±0.009 for M = 32, 12, ?12 and ?32, respectively. Application of the Legendre expansion technique and the density matrix formalism provided a deconvoluted σhr(γ), for a single angle of attack γ of the NO axis, expressed in simple model functions with adjustable parameters. From this analysis it is concluded that chemiluminescence only occurs when cos γ ≈ 1, the “end-on-head” orientation of NO yielding ≈ 30% of all collected light, and when cos γ ≈ ?0.275, the “broad-side-tail” orientation of NO yielding the remaining 70%. The steric factors belonging to these reactive orientations have been estimated and are S1 = 0.25±0.07 and S2 = 0.40±0.09, respectively. The observed dependence of σhr has been confronted with the rules of Woodward and Hoffman. Although there are indeed two symmetries (bpl and cpl) correlating the electron orbitals of the reactants and the products, these rules do not lead to an explanation of the steric effects of the NO+O3 reaction.  相似文献   

5.
Time-resolved fluorescence laser-induced spectroscopy was used to examine the quenching of the vibrational levels ν = 0 and ν = 1 of N2+(B2Σu+) by N2. The rate coefficients of the quenching reactions are found to be constant over the temperature range 300–500 K. The quenching constant for the ν = 1 state was found to be approximately twice the value of the quenching constant of the ν = 0 state.  相似文献   

6.
Discrete vibrational structure has been observed in the photoelectron spectrum of oxygen at an ionization potential of 40.33 eV. Two levels, attributed to the O2+2Σg?g2s) final state, have been detected with a vibrational spacing of 0.071 eV.  相似文献   

7.
The nitrous oxide dimer cation (N2O)2+ has been studied in the visible wavelength range by photodissociation of a mass-selected high-energy ion beam followed by energy analysis of the charged photofragments. Information on the angular anisotropy of the fragmentation process has been obtained by rotating the polarization direction of the laser light. The results allow conclusions to be drawn about the lifetime of the optically accessed excited electronic state and on the energy disposal in the photofragmentation event.  相似文献   

8.
The geometrical parameters, normal vibration frequencies, and thermochemical characteristics of the Na2Cl+, NaCl 2 , Na3Cl 2 + , and Na2Cl 3 ions in saturated vapors over sodium chloride were calculated by the ab initio methods including electron correlation. According to calculations, the Na2Cl+ and NaCl 2 triatomic ions have a linear equilibrium D h configuration. The pentaatomic ions can exist in the form of the D h linear isomer, C 2v planar cyclic isomer, or D 3h bipyramidal isomer. At ∼1000 K the Na3Cl 2 + and Na2Cl 3 ions exist predominantly in the form of the linear isomers. The energies and enthalpies of the ion-molecule reactions involving the above ions were calculated. The formation enthalpy of the ions Δf H 0(0 K) was determined: 230 ± 2 kJ/mol (Na2Cl+), −96 ± 4 kJ/mol (Na2Cl 3 ), −616 ± 2 kJ/mol (NaCl 2 ), and −935 ± 4 kJ/mol (Na2Cl 3 ). Original Russian Text Copyright ? 2007 by T. P. Pogrebnaya, A. M. Pogrebnoi, and L. S. Kudin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 6, pp. 1053–1061, November–December, 2007.  相似文献   

9.
10.
Two mechanisms for the predissociation of the C2Σu+ state of N2+ are discussed - the accidental mechanism and a direct, homogeneous process C → B2Σu+. The matrix elements for the latter channel are dominated by a contribution from the nuclear kinetic energy operator, containing a Franck-Condon integral of form 〈?|?/?R|υ′〉.  相似文献   

11.
The photodissociation cross section of the weakly bound positive ion cluster O2+(H2O) has been measured at 15 discrete energies between 1.833 and 2.727 eV. Measurements indicate the cross section increases smoothly from 0.6 to 6 × 10-18 cm2 over this energy range. These cross section values are the largest reported for a positive ion cluster of atmospheric importance.  相似文献   

12.
The forward and reverse rate coefficients for the reactions (1) O2H+ + H2 ? H3+ + O2 and (2) O2D+ + D2 ? D3+ + O2 have been determined in a SIFT at 80 and 300 K, from which values of the enthalpy and entropy changes in the reactions have been obtained. The data indicate that the proton affinity of H2 is greater than that of O2 by 0.33 ± 0.04 kcal mole?1; similary, the deuteron affinity of D2 is 0.35 ± 0.04 kcal mole?1 greater than that of O2. The measurements of entropy changes confirm that O2H+ has a triplet electronic ground state.  相似文献   

13.
The recombination energy of N22+ has been computed using N22+, N22+ and N2 potential curves from the literature. Vibrational overlaps and energies liberated in the various N22+3?g,1g+, 3Πu, 1Πu → N2+(X2+g, A 2+g, A 2Πu, B2u+,C2u+) vibronic transitions have been computed and used as input for determination of the N2+ recombination energy.  相似文献   

14.
Products of the N2(A) + O2 reaction were measured in a discharge-flow reactor. N2O accounts for only (2 ± 0.5)% of the reaction, contrary to recent reports, and O-atoms for 165 ± 10)% if N2(A) is quantitatively produced from Ar3 with excess N2 This assumption is examined and specific N2(A) + O2 rate parameters are estimated.  相似文献   

15.
Rate coefficients for the collisional quenching of O2*(1Δg) by NO and CO2 at 2–8 torr and 300 K have been determined. kNO = (2.48 ± 0.23) × 10?17 cm3 molecule?1 s?1 and
= (2.56 ± 0.12) × 10?18 cm3 molecule?1 s?1.  相似文献   

16.
High-resolution spectra of the NO2 continuum emission produced from the reaction NO + O3 → NO2 + O2 have been investigated to detect any possible emission from O2(1Δg) at 1270 nm or O2(1Σ+g) at 762 nm. The photolysis of O3/O2 mixtures at 253.7 nm, which produces both states of O2 with known quantum efficiency, has been used as an internal standard. From the results it is concluded that less than 1/300 and 1/200 of the NO + O3 reactive collissions result in production of O2(1Δg) or O2(1Σ+g), respectively, at room temperature.  相似文献   

17.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

18.
19.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号