首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

2.
In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition‐metal‐substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt‐containing Keggin POMs, [CoIIW12O40]6? ( 1 a ), [CoIIIW12O40]5? ( 2 a ), [SiCoII(H2O)W11O39]6? ( 3 a ), and [SiCoIII(H2O)W11O39]5? ( 4 a ), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited‐state dynamics of these compounds at an unprecedented level. All species exhibit a bi‐exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal‐to‐polyoxometalate charge transfer (MPCT) from CoII to W, while the longer‐lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion ( 1 a ) is far longer‐lived (τ=420 ps in H2O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single CoII atom is located in a pseudo‐octahedral addendum site. Short‐lived states are observed for the two CoIII‐containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→CoIII charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.  相似文献   

3.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   

4.
A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3?Na?CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3?Na?FeIII(acac)3] ( 2 ) and [NiII(hfac)3?Na?CoIII(acac)3] ( 3 ) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   

5.
Bistability of the four cis/trans isomers of the proposed iron-cobalt binuclear complex [(CO)2(benzoate-)FeII/III(-terephthalate-)CoIII/II(-benzoate)(CO)2]1+, arising from the FeII/III ↔ CoIII/II intramolecular charge transfer (IMCT) is investigated computationally at (TD)DFT-B3LYP/LanL2DZ level of theory. Energies, geometries, atomic charges, and the UV-Vis spectra are considered in this investigation. Results approve IMCT bistability of all cis/trans isomers by locating two stable states with distinctly different structures and charge distributions (FeII-CoIII and FeIII-CoII oxidation states). Also, well-defined first-order saddle points between these two IMCT states are found and characterized using QST2/QST3 method. Based on the analysis of the calculated charge distributions and the 0.35-1.66 eV activation (barrier) energies of the FeII-CoIII ↔ FeIII-CoII IMCT reactions, it can be predicted that electric field or NIR radiation may be used to switch between the two IMCT states of this bistable binuclear complex. It is also found that the cis/trans isomerization has significant effects on the energetics of this IMCT reaction, and that the trans-FeII/III-trans-CoIII/II isomer is the best candidate for prospective switching application due to having the least energy dissipation and the largest charge transfer.  相似文献   

6.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   

7.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:,14,15-tribenzo-9,13-dioxacyclohexadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,3-bis(2-carboxyaldehyde phenoxy)propane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by a template effect by reaction of 2,6-diaminopyridine and 1,3-bis (2-carboxyaldehyde phenoxy)propane and Cu O, Ni O, Co O, La O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H- and 13C-NMR-, UV-vis spectra, magnetic susceptibility, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and the CuII complex is binuclear. The diamagnetic behaviour of the binuclear complex may be explained by a very strong anti-ferromagnetic interaction in the Cu–Cu pair. The CoII was oxidised to CoIII.  相似文献   

8.
Interfacial electron transfer induced by 254 nm light at nanomaterial (nm) titanium dioxide/CoIII(N–N)3 3+ interface in binary mixed solvent media such as water/methanol (or 1,4-dioxane) has been probed. The distinct photo reduction of cobalt(III) complexes, CoIII(N–N)3 3+; (N–N)=(NH3)2, en (1,2-diamino ethane), pn (1,2-diamino propane), tn (1,3-diamino propane), and bn (1,4-diamino butane), by excited nm-TiO2 particles: CoIII + nm-TiO2 + hν → TiO2 (h+;e) + CoIII → nm-TiO2 (h) + CoII is solvent controlled. The electron transfer from the conduction band of TiO2 (e, CB) onto the metal centre of the complex consists of (i) electron transport from CB into surface-adsorbed species A: CoIII(N–N)3 3+ (ii) solution phase species B: CoIII(N–N)3 3+ (sol.), accumulated at the surface of the nanoparticle. In addition, UV irradiation of CoIII(N–N)3 3+ stimulates generation of \textCo\textaq\textII {\text{Co}}_{\text{aq}}^{\text{II}} ion, due to charge transfer transition, in solution phase. After UV irradiation, cobalt-implanted nm-TiO2 separated as gray ultrafine particles, which were isolated. Photo efficiency of the formation of CoII ion was estimated and the cobalt implanted nanomaterial crystals isolated from the photolyte solutions were subjected to SEM-EDX, X-ray mapping, and HRTEM-SAED analyses. Solvent medium was found to contribute in both the formation of CoII ion and interstitial insertion of cobalt into the lattice of nm-TiO2.  相似文献   

9.
Thermolysis of cyano complexes. VII. On the thermal decomposition of hexacyanocobaltate(III); ligand exchange during thermolysis The thermal decomposition of hexacyanocobaltates(III) yields, as products of successive intramolecular redox reactions, first dicyan and CoII(CoIII)-complexes, then CoII[CoII]-complexes and simple CoII(CN)2, respectively, and finally CoICN and elemental Co, respectively. All the compounds of the [CoIII(NH3)6]3+ cation with the cyanometallate anions of Co, Fe, Cr, Mn, Ni, Mo yield the same DTA curve as [Co(NH3)6][Co(CN)6] does; in the case of Ni and Cr, which are capable of forming ammine complexes, simultaneous mutual ligand exchange occurs.  相似文献   

10.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
It is a challenge to reversibly switch both magnetism and polarity using light irradiation. Herein we report a linear Fe2Co complex, whereby interconversion between FeIIILS(μ-CN)CoIIHS(μ-NC)FeIIILS (LS=low-spin, HS=high-spin) and FeIIILS(μ-CN)CoIIILS(μ-NC)FeIILS linkages could be achieved upon heating and cooling, or alternating laser irradiation at 808 and 532 nm. The electron spin arrangement and charge distribution were simultaneously tuned accompanying bidirectional metal-to-metal charge transfer, providing switchable polarity and magnetism in the complex.  相似文献   

12.
Summary The stereochemistry and complexation behaviour of diphenyl diketone monothiosemicarbazone (DKTS) with CuII, CoII, NiII, CdII, ZnII, PdII, PtII, RuIII, RhIII and IrIII have been investigated by means of chemical, magnetic and spectral (i.r., Raman, 1H- and 13C-n.m.r. and electronic) studies. The ligand forms complexes of the M(DKTS)2 type with NiII, CuII and CoII having a distorted octahedral geometry. The absence of a v(M—X) band in the i.r. spectra, coupled with their 1:1 electrolytic conductances, suggests that RuIII, RhIII and IrIII form octahedral complexes of the [M(DKTS)2]Cl type. A four-coordinate structure involving bridging halides is proposed for the ZnII, CdII, PdII and PtII complexes, which have relatively low v(M—X) vibration modes.  相似文献   

13.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

14.
A diamagnetic AuI4CoIII2 hexanuclear complex, [Au4Co2(dppe)2(l ‐nmc)4]2+ ([ 1L ‐ nmc ]2+; dppe=1,2‐bis(diphenylphosphino)ethane, l ‐H2nmc=N‐methyl‐l ‐cysteine), was newly synthesized by the reaction of [Co(l ‐nmc)2]? with [Au2Cl2(dppe)] and crystallized with different inorganic anions (X=ClO4?, NO3?, Cl?, SO42?) to produce ionic solids ([ 1L ‐ nmc ]Xn). Single‐crystal X‐ray analysis revealed that all the solids crystallize in the chiral space group F432 with a face‐centered‐cubic lattice structure consisting of supramolecular octahedra of complex cations. The paramagnetic nature of all the solids was evidenced by magnetic susceptibility measurements, showing the variation of the oxidation states of two cobalt centers in [ 1L ‐ nmc ]n+ from CoII1.00CoIII1.00 for X=ClO4? or NO3? to CoII0.67CoIII1.33 for X=Cl?, via CoII0.83CoIII1.17 for X=SO42?. The difference in the CoII/III mixed‐valences was explained by the difference in sizes and charges of counter anions accommodated in lattice interstices with a fixed volume.  相似文献   

15.
The reaction of Na[CoIII(d -ebp)] (d -H4ebp = N,N′-ethylenebis[d -penicillamine]) with [(AuICl)2(dppe)] (dppe = 1,2-bis[diphenylphosphino]ethane) gave a cationic AuI4CoIII2 hexanuclear complex, [CoIII2(LAu4)]2+ ([ 1 ]2+), where [LAu4]4− is a cyclic tetragold(I) metalloligand with a 32-membered ring, [AuI4(dppe)2(d -ebp)2]4−. Complex [ 1 ]2+ crystallized with NO3 to produce a charge-separation (CS)-type ionic solid of [ 1 ](NO3)2. In [ 1 ](NO3)2, the complex cations are assembled to form cationic supramolecular hexamers of {[ 1 ]2+}6, which are closely packed in a face-centered cubic (fcc) lattice structure. The nitrate anions of [ 1 ](NO3)2 were accommodated in hydrophilic and hydrophobic tetrahedral interstices of the fcc structure to form tetrameric and hexameric nitrate clusters of {NO3}4 and {NO3}6, respectively. An analogous CS-type ionic solid formulated as [NiIICoIII(LAu4)](NO3) ([ 2 ](NO3)) was obtained when a 1:1 mixture of Na[CoIII(d -ebp)] and [NiII(d -H2ebp)] was reacted with [(AuICl)2(dppe)], accompanied by the conversion of the diamagnetic, square-planar [NiII(d -H2ebp)] to the paramagnetic, octahedral [NiII(d -ebp)]2−. While the overall fcc structure in [ 2 ](NO3) was similar to that of [ 1 ](NO3)2, none of the nitrate anions were accommodated in any hydrophobic tetrahedral interstice, reflecting the difference in the complex charges between [ 1 ]2+ and [ 2 ]+.  相似文献   

16.
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+ species results in the formation of [CoII4-L)(OH2)]2+. Further reduction produces [CoI4-L)(OH2)]+, which undergoes a rate-limiting structural rearrangement to [CoI5-L)]+ before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII−H]2+ estimated from PR experiments, we found that while the protonation of [CoIII−H]2+ is unfavorable, [CoII−H]+ reacts with protons to produce H2. The catalytic activity for H2 evolution tracks the hydricity of the [CoII−H]+ intermediate.  相似文献   

17.
Mononuclear monodioxolene valence tautomeric (VT) cobalt complexes typically exist in their low spin (l.s.) CoIII(cat2−) and high spin (h.s.) CoII(sq⋅) forms (cat2−=catecholato, and sq⋅=seminquinonato forms of 3,5−di−tBu-1,2-dioxolene), which reversibly interconvert via temperature-dependent intramolecular electron transfer. Typically, the remaining four coordination sites on cobalt are supported by a tetradentate ligand whose properties influence the temperature at which VT occurs. We report that replacing one chelating pyridyl arm of tris(2-pyridylmethyl)amine (tpa) with a weaker field ortho-anisole moiety facilitates access to a third magnetic state, and examine a series of related complexes. Variable temperature crystallographic, magnetic, calorimetric, and spectroscopic studies support that this third state is consistent with l.s. CoII(sq⋅). Thus, our ligand modifications not only provide access to the VT transition from l.s. CoIII(cat2−) to l.s. CoII(sq⋅), but at higher temperatures, the complex undergoes spin crossover from l.s. CoII(sq⋅) to h.s. CoII(sq⋅), representing the first example of two-step magnetic switching in a mononuclear monodioxolene cobalt complex. We hypothesize that ligand dynamicity may facilitate access to the rarely observed l.s. CoII(sq⋅) intermediate state, suggesting a new design criterion in the development of stimulus-responsive multi-state molecular switches.  相似文献   

18.
A planar network consisting of {Mo17(NO)2}3{MoV 2}3{Fe6III} cluster entities that are interlinked to layers via {FeII(H2O)4}2+ groups is formed stepwise from building units. The corresponding mixed-valence compound exhibits a variety of different formal oxidation states: {MoNO}3+, MoV, MoVI, FeII, and FeIII. This compound also represents an extension of building-block hierarchy from the molecular level to extended networks.  相似文献   

19.
The X-ray K-absorption edge of cobalt in some cobalt (II) and cobalt (III) complexes has been investigated using a 400 mm bent crystal spectrometer. The structure associated with the absorption edge has been used to deduce information regarding the bond lengths, the mode of bonding and the coordination of cobalt in complexes. On the basis of the results obtained, it has been concluded that Co ions are surrounded by distorted octahedra in CoII(Saltn)(H2O)2, CoIII(acac)(Saltn) whereas Co ions in CoII(Salbn) have a tetrahedral structure and Co ions in CoII(SalHn) have pseudotetrahedral structure. All the compounds exhibit slight ionic character.  相似文献   

20.
It is a challenge to reversibly switch both magnetism and polarity using light irradiation. Herein we report a linear Fe2Co complex, whereby interconversion between FeIIILS(μ‐CN)CoIIHS(μ‐NC)FeIIILS (LS=low‐spin, HS=high‐spin) and FeIIILS(μ‐CN)CoIIILS(μ‐NC)FeIILS linkages could be achieved upon heating and cooling, or alternating laser irradiation at 808 and 532 nm. The electron spin arrangement and charge distribution were simultaneously tuned accompanying bidirectional metal‐to‐metal charge transfer, providing switchable polarity and magnetism in the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号