首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures of the 4-4 SBU, the β-cage, and the β-cage with two 4-4 SBU's attached to it have been studied by means of EH-MO calculations. No indication of the formation of a band structure has been found. The HOMO region consists of many closely spaced, localized states, 98.6% of them concentrated on the O-atoms. Reversible color changes of Cu+1 and Ag+1 zeolites observed upon hydration-dehydration experiments can be understood as charge-transfer transitions from the HOMO concentrated on the zeolite O-atoms to the metal cations. As soon as the Cu+1 or Ag+1 are partially hydrated, the ns* and np* states are shifted to higher energies. The luminescence observed with dehydrated Cu+1-zeolites X is caused by a 4p*←HOMO absorption, followed by spontaneous 4s*←4p* emission. After a detailed study of a Cu+1 in the 6-6 SBU, we discuss the electronic structure of a β-cage filled with 1,2,4,8, and 9 Cu+1. In each case, the β-cage is found to be too small to allow the formation of a band structure. The levels caused by the added copper are distinctly quantized. Calculations on [Ag3(H2O)3]3+ in a β-cage are reported. The direct interaction between the Ag-atoms is significant. As a consequence, the states formed by Ag 5s and 5p atomic orbitals are delocalized over the three Ag-centers. In both the Cu+1 and the Ag+1 zeolites, the ligand-field picture is found to be insufficient to explain the electronic structure, when the metal is coordinated to the zeolite oxygen framework.  相似文献   

2.
Rydberg states of potassium dimer have been studied in a crossed laser-molecular beam experiment. The K2 molecules were formed in a supersonic expansion and excited by low-power cw dye laser. Two different excitation schemes have been used: The first scheme uses a single mode ring dye laser to induce near resonant two-photon transitions while in the second scheme stepwise excitation with two dye lasers is used. In each case excitation of Rydberg levels was detected by monitoring the ionization signal resulting from three-photon absorption. We report a detailed study of 700 two-photon resonances between 625 nm and 650 nm. Most of these signals can be assigned to transitions from the X1σ g + to1σ g + ,1Π g , and g states, which are all enhanced by the B1Π u intermediate state. Accurate rotational constants are given for the populated vibrational levels of these states. By stepwise excitation of Rydberg levels via theB 1Π u state we identify 3 series of Rydberg states as1Δ g (4S+nD),1Σ g + (4S+nD), and1Σ g + (4S+nS) with principal quantum numbers 7≦n≦20. Molecular constants of these and other observed but as yet unidentified states are given; quantum defects and dissociation energies are discussed.  相似文献   

3.
A practical procedure for calculation of nuclear quadrupole coupling constants for light diatomic molecules is discussed. The procedure is based on a molecular wave function that explicitly describes nuclear motion. The approach is capable of yielding quadrupole coupling constants for excited rovibrational levels of diatomic molecules in their ground and excited electronic states. An application of the procedure to the X1Σ+g and B1Σ+u states of HD and D2 is presented.  相似文献   

4.
This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analy te and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M]+ and protonated [M + H]+ molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O2]+, which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M]+. Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forrning a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M]+ typically had a higher intensity than the protonated molecule [M + H]+. Interestingly, the latter drifts slower than the radical cation [M]+, which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr.  相似文献   

5.
《Chemical physics letters》2001,331(3-4):351-358
A method of calculating analytical energy gradient of high-spin multiplet state by the SAC-CI (symmetry-adapted-cluster configuration-interaction) method is developed and implemented. This method is expected to be a powerful tool in studying the dynamics and properties of molecules having high spin-multiplicities. Good performance of this method is shown for the quartet states of BH+ and C2+ and for the quintet states of C2. The SAC-CI general-R method is also extended to the high-spin states, and proved to be useful especially for calculating accurate adiabatic excitation energies of the systems having quasi-degenerate orbital structure.  相似文献   

6.
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm–1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20 + vs. Gdm(H2O)100 + and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.  相似文献   

7.
A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  相似文献   

8.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

9.
Silicon atoms react under single collision conditions with N2O to yield chemiluminescent emission corresponding to the SiO a3Σ+?X1Σ+ and b3Π?X1Σ+ intercombination systems and the A1Π?X1Σ+ band system. A most striking feature of the SiN2O reaction is the energy balance associated with the formation of SiO product molecules in the A1Π and b3Π states. A significant energy discrepancy ( = 10000 cm? = 1.24 eV) is found between the available energy to populate the highest energetically accessible excited-state quantum levels and the highest quantum level from which emission is observed. It is suggested that this discrepancy may result from the formation of vibrationally excited N2 in a concerted fast SiN2O reactive encounter. Emission from the SiO a3Σ+ (A1Π) and b3Π(A1Π, E1Σ0+) triplet-state manifold results primarily from intensity borrowing involving the indicated singlet states. Perturbation calculations indicate the magnitude of the mixing between the b3Π, A1Π and E1Σ0+ states ranges between 0.5 and 2%. On the basis of these calculations, the branching ratio (excited triplet)/(excited singlet) is found to be well in excess of 500. An approximate vibrational population distribution is deduced for those molecules formed in the b3Π state. The present studies are correlated with those of previous workers in order to provide an explanation for diverse relaxation effects as well as observed changes in the ratio of a3Σ+ to b3Π emission as a function of pressure and experimental environment. Some of these effects are attributable to a strong coupling between the a3Σ+ and b3Π state. Based on the current results, there appears to be little correlation between either (1) the branching ratio for excited state formation or (2) the total absolute cross section for excited-state formation and (3) the measured quantum yield for the SiN2O reaction. Implications for chemical laser development are considered.  相似文献   

10.
《Chemical physics》1987,111(1):113-120
The possible dynamical pathways which are likely to occur in collisional encounters between BH(X 1Σ+) molecules and protons in the centre-of-mass energy range of a few eV are discussed. The DIM model is used to described the potential energy surfaces (PESs) of the BH2)+ system which are most relevant at the considered energies. Possible processes include inelastic scattering and charge-transfer events which can produce different electronic states of BH+ ions depending on the relative orientations of colliding partners during encounters.  相似文献   

11.
《Chemical physics》1987,117(1):149-162
The molecular constants of the A1Σ+ and X1Σ+ states of the KH and KD molecules have been determined using mass relations correspondent to a normal isotope shift. For the calculation we have used data of the laser-induced fluorescence spectrum by the Ar+ 4881 Å exciting line photographed in our laboratory, as well as previous data presented by other authors. From the spectroscopic terms, quantum-mechanical PMO-RKR-van der Waals hybrid potentials have been generated. Numerical calculations for the A1Σ+ and X1Σ+ states of the KH and KD species are comapred with quantum-mechanical values obtained by numerical solution of the radial Schrödinger equation. Vibrational wavefunctions appropriate to the potential curves yield values of Eυ and Bυ which are in close agreement with the experimental results. The probability distribution functions and Franck-Condon factors for the A1Σ+ ↔ X1Σ+ band system have also been determined. It is observed that the anomalous behaviour of the A state is clearly revealed with a changed anharmonicity for the lowest vibrational levels.  相似文献   

12.
Dissociative ionisation of Na2 via the 3s 3d 1Σ g and1Π g states has been studied in the near threshold energy regime up to 120 meV above the three particle (Na+ + Na(3s) +e ?) break up limit. A pulsed, cold molecular beam, pulsed laser 2 colour 3 photon resonantly enhanced multiphoton ionisation, and kinetic energy analysis of the fragments by a time of flight method (KETOF) is used. As series of vibrational levels in the two intermediate 3s 3d Rydberg states are excited, slow Na+ fragments are observed with a maximum kinetic energy given by the excess energy of the 2 + 1 photon process above threshold, thus confirming a direct dissociative ionisation process. The intensity distribution of the Na+ fragments shows a very pronounced maximum at zero kinetic energy, its shape differing somewhat for the1Σ g and1Π g intermediate states. Also observed is a strong signal of fast fragments arising from a typical 4 photon process which leads to dissociation of Na 2 + molecules in their electronic ground state.  相似文献   

13.
The static secondary ionization mass spectrometry (SIMS) spectrum of tri-n-butyl phosphate (TBP) on a variety of basalt and quartz samples is affected by the chemical composition of the mineral surface. When TBP is adsorbed on Fe(II)-bearing surfaces, the compound undergoes concomitant H? abstraction and reduction, followed by the elimination of two C4H8 molecules to form an ion at m/z 137+. When TBP is adsorbed to quartz or other nonreducing surfaces, it merely undergoes protonation and elimination of three C4H8 molecules to form H4PO 4 + . When TBP is adsorbed to Fe(III)-bearing surfaces, it undergoes H? abstraction and elimination of two C4H8 molecules, to form an ion at m/z 153+. These conclusions are supported by model studies that employed FeO, Fe203, TBP, and tributyl phosphite. The results show that the SIMS spectrum is very sensitive to the mode of TBP adsorption on the mineral surface.  相似文献   

14.
Time-integrated and time-resolved excitation spectra, as well as fluorescence lifetimes, have been measured for xenon vapor as a funtion of pressure (for pure xenon as well as with different collision partners: krypton and helium), monitoring the 1700 Å second continuum afterglow. Three very different decay components have been observed: (a) A short component with lifetimes of the order of 2 ns, which is attributed to emission from the upper vibrational levels of the O+u(1Σ+u) state of Xe*2. (b) A long component with τ ≈ 60 ns, corresponding to emission from thermally relaxed vibrational levels of the 1u,O?u(3Σ+u) states of Xe*2. No intervention of any Xe atomic excited species is invoked to explain the excitation and deactivation processes of Xe2 molecules for these two components of the fluorescence. (c) A very long component with lifetimes in the 150–500 ns range, having a broad ? 1000 cm?1 - excitation band, centered at ≈ 1470 Å and showing a striking screening and self-absorption effect as well as a strong effect when the partial pressure of a collision partner (Kr, He) is increased. The mechanism of this last excitation is not yet very well understood.  相似文献   

15.
The interaction of O+ ion with several (from one to four) water molecules was studied by theab initio (UMP4/4-31G*) and semiempirical (AM1) quantum-chemical methods. It was found that the energy of binding the O+ ion to the first water molecule is appreciably higher than those of binding to the subsequent water molecules. In the complex with a water molecule, whose structure corresponds to that of water oxide, the O+ ion retains high reactivity. The barrier to the transfer of O+ ion to another water molecule is much lower than the barrier to analogous transfer of O atom from the molecule of water oxide, despite the lower dissociation energy of the H2O−O bond. Consideration of subsequent interactions with water molecules leads to an increase in the barrier to the transfer of O+ ion. The doublet and quadruplet excited states of the O++2 H2O system were also studied. In these cases, the formation energies are well described by the ion-dipole model. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 981–988, June, 2000.  相似文献   

16.
The 300 K reactions of O2 with C2(X 1Σ+g), C2(a 3 Πu), C3(X? 1Σ+g) and CN(X 2Σ+), which are generated via IR multiple photon dissociation (MPD), are reported. From the spectrally resolved chemiluminescence produced via the IR MPD of C2H3CN in the presence of O2, CO molecules in the a 3Σ+, d 3Δi, and e 3Σ? states were identified, as well as CH(A 2Δ) and CN(B 2Σ+) radicals. Observation of time resolved chemiluminescence reveals that the electronically excited CO molecules are formed via the single-step reactions C2(X 1Σ+g, a 3Πu) + O2 → CO(X 1Σ+ + CO(T), where T denotes are electronically excited triplet state of CO. The rate coefficients for the removal of C2(X 1Σ+g) and C2(a 3Πu) by O2 were determined both from laser induced fluorescence of C2(X 1Σ+g) and C2(a 3Πu), and from the time resolved chemiluminescence from excited CO molecules, and are both (3.0 ± 0.2)10?12 cm3 molec?1 s?1. The rate coefficient of the reaction of C3 with O2, which was determined using the IR MPD of allene as the source of C3 molecules, is <2 × 10?14 cm3 molec?1 s?1. In addition, we find that rate coefficients for C3 reactions with N2, NO, CH4, and C3H6 are all < × 10?14 cm3 molec?1 s?1. Excited CH molecules are produced in a reaction which proceeds with a rate coefficient of (2.6 ± 0.2)10?11 cm3 molec?1 s?1. Possible reactions which may be the source of these radicals are discussed. The reaction of CN with O2 produces NCO in vibrationally excited states. Radiative lifetime of the ā 2Σ state of NCo and the ā 1Πu(000) state of C3 are reported.  相似文献   

17.
Time-resolved Fourier-transform spectroscopy and two-color laser-induced grating spectroscopy are two new techniques recently employed in this laboratory. We recorded emission in the near infrared region during laser photolysis of HONO2 with a step-scan Fourier-transform spectrometer and achieved temporal resolution in the microsecond range and spectral resolution of 0.1 cm1. Rotationally resolved emission lines of the (0,0) band of the D 2+ →A 2+ transition of NO in the region 8900-9300 cnv?1 with irregular relative intensities were observed when an ArF excimer laser was used to photodissociate HONO2. The spectroscopic parameters of both D 2+ and A 2+ states agree with those previously reported. When a narrow-band ArF laser was used, selective rotational levels of the D state of NO were populated depending on the wavelength of the ArF laser. Our results indicate that absorption of a 193-nm photon by NO(υ″ = 1) is responsible for the observed emission. To test the technique of two-color laser-induced grating spectroscopy, we employed the B 3II0U+-X 1g + system of I2. Background-free spectra with transitions involving rotationally selected states were recorded. Various experimental schemes were employed with population gratings formed in either the B or X state. Signals due to different four-wave mixing schemes were distinguished by variation of relative timing between the grating beams and the probe beam.  相似文献   

18.
The theory of second-order Stark effect in 1Σ states of heteronuclear diatomic molecules is thoroughly reviewed. The rigorous treatment given demonstrates that by introducing rotational, vibrational and electronic branch polarizabilities, the intrinsic character of the second-order Stark effect in diatomic molecules can be shown to be related more closely to polarizabilities than to dipole moments. The well-known expression for the Stark shift in 1Σ levels which is dominated by the square of the dipole moment is only a crude, though sufficient approximation whenever large dipole moments are involved. For small dipole moments, however, this approximation is likely to fail, leading to an erroneous determination of such dipole moments. In the limiting case of negligible influence of the molecular rotation on the vibronic matrix elements, the arithmetic mean of the electronic branch polarizabilities turns out to be equal to the well-known static electronic polarizabilities α and α. The results are applied to the interpretation of the Stark splitting in the A1Σ+, υ′ = 5, J′ = 1 level of 7LiH, recently determined by Stark quantum-beat spectroscopy.  相似文献   

19.
By means of two-photon sequential absorption via real intermediate rotational levels of the A state, vibrational levels of three new excited electronic states of the sodium dimer have been observed in the 4 eV region. These states are identified as F1+g, G1 Πg and H1 Πg. Their vibrational and rotational constants have been determined.  相似文献   

20.
《Chemical physics letters》1985,119(6):477-479
New visible emission systems have been observed from the helium afterglow reaction of SnH4. On the basis of the rotational analysis, they were interpreted as the a3Π0-X1Σ+ and a3Π1-X1Σ+ subsystems of SnH+. Spectroscopic constants have been obtained for the a3Π0+ and X1Σ+ states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号