首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new protein fractionation technique based on off-gel isoelectric focusing (IEF) is presented, where the proteins are separated according to their isoelectric point (pI) in a multiwell device with the advantage to be directly recovered in solution for further analysis. The protein fractions obtained with this technique have then been characterized with polymer nanoelectrospray for mass spectrometry (MS) analyses or with Bioanalyzer for mass identification. This methodology shows the possibility of developing alternatives to the classical two-dimensional (2-D) gel electrophoresis. One species numerical simulation of the electric field distribution during off-gel separation is also presented in order to demonstrate the principle of the purification. Experiments with pI protein markers have been carried out in order to highlight the kinetics and the efficiency of the technique. Moreover, the resolution of the fractionation was shown to be 0.1 pH unit for the separation of beta-lactoglobulin A and B. In addition, the isoelectric fractionation of an Escherichia coli extract was performed in standard solubilization buffer to demonstrate the performances of the technique, notably for proteomics applications.  相似文献   

2.
In proteomic investigations, a number of different separation techniques can be applied to fractionate whole cell proteomes into more manageable fractions for subsequent analysis. In this work, utilizing HPLC and mass spectrometry for protein identification, two different fractionation methods were compared and contrasted to determine the potential of each method for the simple and reproducible fractionation of a bacterial proteome. Column-based chromatofocusing and liquid-based isoelectric focusing both utilized pH gradients to produce similar results in terms of the numbers of proteins successfully identified (402 and 378 proteins) and the consistency of proteins identified from one experiment to the next (<10% change). However, there was limited overlap in the protein sets with <50% of the proteins identified as common between the sets of proteins identified by the different systems. In addition to the numbers of proteins identified and consistency of those identified, the reduced monetary costs of experimentation and increased assay flexibility produced by using isoelectric focusing was considered in order to adopt a system best suited for comparative proteomic projects.  相似文献   

3.
In this study we have investigated whether micro-solution isoelectric focusing (microsol-IEF) can be used as a pre-fractionation step prior to liquid chromatography/tandem mass spectrometry (LC/MS/MS) and if extensive sample purification of the different fractions is required. We found that, in spite of the high concentrations of buffer and detergents, no clean up of the digested microsol-IEF fractions was necessary before analysis by LC/MS/MS. We also concluded that it is possible to identify at least twice as many proteins in a glioma cell lysate with the combination of microsol-IEF and LC/MS/MS than with LC/MS/MS alone. Furthermore, most of the proteins that were identified from one microsol-IEF fraction by using analytical narrow-range two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) were also identified by LC/MS/MS. Finally, we used the combination of microsol-IEF and LC/MS/MS to compare two sample preparation methods for glioma cells and found that several nuclear, mitochondria, and endoplasmic reticulum proteins were only present in the sample that had been subjected to lipid extraction by incubating the homogenized cells in chloroform/methanol/water.  相似文献   

4.
Synaptic pathology is central in the pathogenesis of several psychiatric disorders, for example in Alzheimer's disease (AD) and schizophrenia. Quantification of specific synaptic proteins has proved to be a useful method to estimate synapitc density in the brain. Using this approach, several synaptic proteins have been demonstrated to be altered in both AD and schizophrenia. Until recently, the analysis of synaptic pathology has been limited to postmortem tissue. In living subjects, these synaptic proteins may be studied through analysis of cerebrospinal fluid (CSF). In an earlier study performed by us, one synaptic vesicle specific protein, synaptotagmin, was detected in CSF for the first time using a procedure based on affinity chromatography, reversed-phase chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and chemiluminescence immunoblotting. However, other synaptic proteins were not detectable with this procedure. Therefore, we have developed a procedure including precipitation of CSF proteins with trichloroacetic acid, followed by liquid-phase isoelectric focusing using the Rotofor Cell, and finally analysis of Rotofor fractions by Western blotting for identification of synaptic proteins in CSF. Five synaptic proteins, rab3a, synaptotagmin, growth-associated protein (GAP-43), synaptosomal-associated protein (SNAP-25) and neurogranin, have been demonstrated in CSF using this method. The major advantage of liquid-phase isoelectric focusing (IEF) using the Rotofor cell is that it provides synaptic proteins from CSF in sufficient quantities for identification. This method may also be suitable for identification of other types of trace amounts of brain-specific proteins in CSF. These results demonstrate that several synaptic proteins can be identified and measured in CSF to study synaptic function and pathology in degenerative disorders.  相似文献   

5.
Zhu Y  Lubman DM 《Electrophoresis》2004,25(7-8):949-958
Preparative isoelectric focusing (PIEF) is used to achieve narrow-band fractionation of proteins from whole cell lysates of Escherichia coli (E. coli). Isoelectric membranes create well-defined pH ranges that fractionate proteins by isoelectric point (pI) upon application of an electric potential. A commercial IsoPrime device (Amersham-Pharmacia BioTech) is modified for the PIEF separation to lessen run volumes significantly. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis of chamber contents indicates that excellent pH fractionation is achieved with little overlap between chambers. PIEF pH fractions are further separated using nonporous reversed-phase high-performance liquid chromatography (NPS-RP-HPLC) and HPLC eluent is analyzed on-line by electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS) for intact protein molecular weight (MW) analysis. The result is a pI versus MW map of bacterial protein content. IEF fractionation down to 0.1 pH units combined with intact protein MW values result in a highly reproducible map that can be used for comparative analysis of different E. coli strains.  相似文献   

6.
Cerebrospinal fluid (CSF) is in close proximity to the brain and changes in the protein composition of CSF may be indicative of altered brain protein expression in neurodegenerative disorders. Analysis of brain-specific proteins in CSF is complicated by the fact that most CSF proteins are derived from the plasma and tend to obscure less abundant proteins. By adopting a prefractionation step prior to two-dimensional gel electrophoresis (2-DE), less abundant proteins are enriched and can be detected in complex proteomes such as CSF. We have developed a method in which liquid-phase isoelectric focusing (IEF) is used to prefractionate individual CSF samples; selected IEF fractions are then analysed on SYPRO-Ruby-stained 2-D gels, with final protein identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). To optimise the focusing of the protein spots on the 2-D gel, the ampholyte concentration in liquid-phase IEF was minimised and the focusing time in the first dimension was increased. When comparing 2-D gels from individual prefractionated and unfractionated CSF samples it is evident that individual protein spots are larger and contain more protein after prefractionation of CSF. Generally, more protein spots were also detected in the 2-D gels from prefractionated CSF compared with direct 2-DE separations of CSF. Several proteins, including cystatin C, IgM-kappa, hemopexin, acetyl-coenzyme A carboxylase-alpha, and alpha-1-acid glycoprotein, were identified in prefractionated CSF but not in unfractionated CSF. Low abundant forms of posttranslationally modified proteins, e.g. alpha-1-acid glycoprotein and alpha-2-HS glycoprotein, can be enriched, thus better resolved and detected on the 2-D gel. Liquid-phase IEF, as a prefractionation step prior to 2-DE, reduce sample complexity, facilitate detection of less abundant protein components, increases the protein loads and the protein amount in each gel spot for MALDI-MS analysis.  相似文献   

7.
Recent advances in protein sequence analysis now permit the determination of partial N-terminal and internal primary structure from low picomole quantities of protein. The major remaining hurdles to sequence analysis of small amounts of protein are the identification, isolation, and handling of microgram and submicrogram quantities of protein. The technique of two-dimensional electrophoresis using immobilized pH gradient isoelectric focusing circumvents many of these problems. However, poor correlation between the first and second dimension have prevented use of this technique for the identification of some proteins which can only be assayed prior to the denaturing conditions used in the second dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis procedure. An improved method is presented which allows correlation of the native biological activity (first dimension) to a silver stained protein (second dimension) with a high degree of confidence.  相似文献   

8.
Tracy NI  Ivory CF 《Electrophoresis》2004,25(12):1748-1757
Recombinant proteins are often produced as isoforms with different kinds and amounts of post-translational modifications that alter their function. Isoelectric focusing in shallow pH gradients, less than 0.5 pH/cm, might be capable of fractionating these isoforms. The synthetic carrier ampholyte mixtures typically used to generate these pH gradients are expensive and may adversely interact with proteins. Using defined buffers instead of synthetic carrier ampholytes reduces these problems. We tested two defined buffer systems in a vortex-stabilized electrophoresis device to see if they could form shallow pH gradients useful for separating isoforms. These pH gradients were formed by pouring a two-component concentration gradient. The poured gradients were smooth, reproducible, and stable for at least 1.5 h at 5 kV. One poured gradient focused 20 mg of cytochrome c. A second poured gradient separated glucose oxidase from amyloglucosidase. The breadth of the amyloglucosidase band indicates that the shallow, poured pH gradients can only partially separate protein isoforms at 10 kV. Proteins with pI < 0.2 pH units apart will have overlapping bands in these shallow, poured pH gradients.  相似文献   

9.
We have elaborated a protocol for the fractionation of both hydrophilic and hydrophobic proteins using as a model the matrix and membrane compartments of highly purified rat liver peroxisomes because of their distinct proteomes and characteristic composition with a high quota of basic proteins. To keep highly hydrophobic proteins in solution, an urea/thiourea/detergent mixture, as used in traditional gel-based isoelectric focusing (IEF), was added to the electrophoresis buffer. Electrophoresis was conducted in the ProTeam free-flow electrophoresis (FFE) apparatus of TECAN separating proteins into 96 fractions on a pH 3-12 gradient. Consecutive sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that both matrix and the integral membrane proteins of peroxisomes could be successfully fractionated and then identified by mass spectrometry. This is documented by the detection of PMP22, which is the most hydrophobic and basic protein of the peroxisomal membrane with a pI > 10. The identification of 96 prominent spots corresponding to polypeptides with different physical and chemical properties, e.g., the most abundant integral membrane polypeptides of peroxisomes and specific ones of the mitochondrial and microsomal membrane, reflects the fractionation potential of free-flow (FF)-IEF, accentuating its value in proteomic research as an alternative perhaps superior to gel-based IEF.  相似文献   

10.
Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte‐free isoelectric focusing on paper‐based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry. This paper‐based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost‐effective protein sample clean‐up method for target protein analysis with mass spectrometry.  相似文献   

11.
On-line coupling between CIEF and ESI/MS based on the use of bare fused-silica capillaries and glycerol-water media, recently developed in our laboratory, has been investigated for the separation of milk whey proteins that present close pI values. First, a new rinsing procedure, compatible with MS detection, has been developed to desorb these rather hydrophobic proteins (α-casein (α-CN), bovine serum albumin (BSA), lactoferrin (LF)) from the inner capillary wall and to avoid capillary blockages. Common hydrochloric acid washing solution was replaced by a multi-step sequence based on the use of TFA, ammonia and ethanol. To achieve the separation of major whey proteins (β-lactoglobulin A (β-LG A), β-lactoglobulin B (β-LG B), α-lactalbumin (α-LA) and BSA, which possess close pI values (4.5-5.35), CIEF parameters i.e. carrier ampholyte nature, capillary partial filling length with ampholyte/protein mixture and focusing time, have been optimized with respect to total analysis time, sensitivity and precision on pI determination. After optimization of sheath liquid composition (80:20 (v/v) methanol-water+1% HCOOH), quantitation of β-LG A, β-LG B, α-LA and BSA was performed. The limits of detection obtained from extracted ion current (EIC) and single ion monitoring (SIM) modes were in the 57-136 nM and 11-68 nM range, respectively. Finally, first results obtained from biological samples demonstrated the suitability of CIEF-MS as a potential alternative methodology to 2D-PAGE to diagnose milk protein allergies.  相似文献   

12.
Due to the nature of lipopolysaccharide endotoxin structures of bacterial pyrogens, their removal from solutions containing therapeutic proteins is often a problem in the pharmaceutical industry. In this report we describe the application of electromotive force to dislodge lipopolysaccharide endotoxins from proteins. This was performed by employing a multicompartment electrolyzer fitted with Immobiline membranes of specified pIs. A thousand-fold reduction of endotoxin could be achieved in the model test system described. This contribution describes the use of a new recycling isoelectric focusing approach without the use of carrier ampholytes.  相似文献   

13.
Wu J  Huang T 《Electrophoresis》2006,27(18):3584-3590
In CIEF analysis, sample peaks can be identified by their relative peak positions (RPP) that are determined using only two internal pI markers. The two internal pI marker peaks should bracket, as close as possible, the sample peaks. The RPP values of the sample peaks are then calculated using the pI values, peak positions of the two pI markers, and peak position of the sample. Use of this method can effectively compensate for pH gradient distortions that often occur as a result of salts. Also, as shown by the results of this paper, regardless of the linearity of the pH gradient established by the given carrier ampholytes, sample peaks can be identified within an SD of 0.1 pH unit in RPP (<2% RSD) as long as the sample is run using the same carrier ampholytes and maintaining salt concentrations in the range of 0-15 mM.  相似文献   

14.
15.
Pham VC  Henzel WJ  Lill JR 《Electrophoresis》2005,26(22):4243-4251
A method for the rapid limited enzymatic cleavage of PVDF membrane-immobilized proteins is described. This method allows the fast characterization of PVDF blotted proteins by peptide mass fingerprinting (Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., Wantanabe, C., Proc. Natl. Acad. Sci. USA 1993, 90, 5011-5015), LC-MS/MS, or N-terminal sequencing and has been demonstrated on a range of proteins using a full complement of proteolytic enzymes. This technique allows the generation of proteolytic fragments between 5 and 60 min (depending on the enzyme employed), which is significantly faster than previously reported on-membrane digestion methods. To date, this on-membrane rapid digestion protocol has aided in the identification and confirmation of mutation sites in over 200 recombinant proteins.  相似文献   

16.
A method for the characterization of proteins separated by isoelectric focusing in carrier ampholytes (CA-IEF) or immobilized pH gradient (IPG) gels by in-gel digestion and mass spectrometry is described. Proteins are detected by an improved imidazole-Sodium dodecyl sulfate (SDS)-zinc staining adapted for IEF and IPG gels. Sensitivity is close to that of mass spectrometry-compatible silver staining, but simpler and faster. Proteins were digested in imidazole-SDS-zinc stained CA-IEF and IPG gels in the presence of a zinc-chelating agent. Mass spectra were clearly interpretable as carrier ampholytes which were efficiently removed before digestion; high-sequence coverage that allowed isoform characterization was obtained by analyzing both the aqueous and the organic phase extracts.  相似文献   

17.
Anabolic androgenic steroids (AAS) are metabolized extensively in the human body, resulting mainly in the formation of glucuronide conjugates. Current detection methods for AAS are based on gas chromatographic/mass spectrometric (GC/MS) analysis of the hydrolyzed steroid aglycones. These analyses require laborious sample preparation steps and are therefore time consuming. Our interest was to develop a rapid and straightforward method for intact steroid glucuronides in biological samples, using liquid-phase microextraction (LPME) sample clean-up and concentration method combined with liquid chromatographic/tandem mass spectrometric (LC/MS/MS) analysis. The applicability of LPME was optimized for 13 steroid glucuronides, and compared with conventional liquid-liquid extraction (LLE) and solid-phase extraction (SPE) procedures. An LC/MS/MS method was developed for the quantitative detection of AAS glucuronides, using a deuterium-labeled steroid glucuronide as the internal standard. LPME, owing to its high specificity, was shown to be better suited than conventional LLE and SPE for the clean-up of urinary AAS glucuronides. The LPME/LC/MS/MS method was fast and reliable, offering acceptable reproducibility and linearity with detection limits in the range 2-20 ng ml(-1) for most of the selected AAS glucuronides. The method was successfully applied to in vitro metabolic studies, and also tested with an authentic forensic urine sample. For a urine matrix the method still has some unsolved problems with specificity, which should be overcome before the method can be reliably used for doping analysis, but still offering additional and complementary data for current GC/MS analyses.  相似文献   

18.
19.
The first use of plasma polymerization technique to modify the surface of a glass chip for capillary isoelectric focusing (cIEF) of different proteins is reported. The electrophoresis separation channel was machined in Tempax glass chips with length 70 mm, 300 microm width and 100 microm depth. Acetonitrile and hexamethyldisiloxane monomers were used for plasma polymerization. In each case 100 nm plasma polymer films were coated onto the chip surface to reduce protein wall adsorption and minimize the electroosmotic flow. Applied voltages of 1000 V, 2000 V and 3000 V were used to separate mixtures of cytochrome c (pI 9.6), hemoglobin (pI 7.0) and phycocyanin (pI 4.65). Reproducible isoelectric focusing of each pI marker protein was observed in different coated capillaries at increasing concentration 2.22-5 microg microL(-1). Modification of the glass capillary with hydrophobic HMDS plasma polymerized films enabled rapid cIEF within 3 min. The separation efficiency of cytochrome c and phycocyanin in both acrylamide and HMDS coated capillaries corresponded to a plate number of 19600 which compares favourably with capillary electrophoresis of neurotransmitters with amperometric detection.  相似文献   

20.
Previous studies have shown that insulin-like growth factor 1 (IGF-1) is a promising marker for the detection of growth hormone (GH) abuse in the horse. The significant increases observed with GH administration in comparison to natural levels imply the possibility of setting a threshold level for IGF-1 that would be indicative of GH abuse. Although an immunoradiometric assay (IRMA) has been identified as a reliable screening method, a more specific IGF-1 quantification method needs to be developed for the prosecution of GH abuse by horseracing authorities. This study describes such an HPLC electrospray mass spectrometry (LC/ESI-MS) method that was developed and then assessed for the specific analysis of IGF-1 at the low levels encountered in serum. The structural identity of IGF-1 was confirmed by endoproteinase Asp-N digestion followed by LC/MS and LC/MS/MS characterisation. This was followed by quantification of IGF-1 as the intact molecule against an internal standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号