首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The impact of fluid elasticity on the dynamic wetting of polymer solutions is important because many polymer solutions in technological use exhibit non-Newtonian behaviors in the high shear environment of the wedge-like flow near a moving contact line. Our former study [G.K. Seevaratnam, Y. Suo, E. Ramé, L.M. Walker, Phys. Fluids 19 (2007) Art. No. 012103] showed that shear thinning induced by a semi-flexible high molecular weight polymer reduces the viscous bending near a moving contact line as compared to a Newtonian fluid having the same zero-shear viscosity. This results in a dramatic reduction of the dependence of the effective dynamic contact angle on contact line speed. In this paper, we discuss dynamic wetting of Boger fluids which exhibit elasticity-dominated rheology with minimal shear thinning. These fluids are prepared by dissolving a dilute concentration of high molecular weight polymer in a "solvent" of the oligomer of the polymer. We demonstrate that elasticity in these fluids increases curvature near the contact line but that the enhancement arises mostly from the weakly non-Newtonian behavior already present in the oligomeric solvent. We present evidence of instabilities on the liquid/vapor interface near the moving contact line.  相似文献   

2.
The macroscopic flow geometry has long been assumed to have little impact on dynamic wetting behavior of liquids on solid surfaces. This study experimentally studied both spontaneous spreading and forced wetting of several kinds of Newtonian and non-Newtonian fluids to study the effect of the macroscopic flow geometry on dynamic wetting. The relationship between the dynamic contact angle, θ(D), and the velocity of the moving contact line, U, indicates that the macroscopic flow geometry does not influence the advancing dynamic wetting behavior of Newtonian fluids, but does influence the advancing dynamic wetting behavior of non-Newtonian fluids, which had not been discovered before.  相似文献   

3.
Several theories deal with the spreading kinetics of liquids on solid substrate, most of which relate the rate of spreading to the surface tension and the viscosity of the liquid. Measurements of the spreading of a number of liquids exhibiting a wide range of surface tension and viscosity on dry soda-lime glass have been carried out to validate the proposed models. The measurements used a small droplet of constant volume to minimize gravitational effects. The contact radius was acquired as a function of time by an image analysis system. It was noted that power law theories describe the spreading rate for silicone oil on glass. However, significant departures were noted in the case of other liquids. Mechanistic considerations of our data suggest that equal volume droplets of similar surface tension and of diverse viscosity spread to the same area but at different rates. On the other hand, the spreading rate of glycerine, which exhibits incomplete spreading on glass, and that of silicone oil, with comparable viscosity behave similarly. These observations seemingly support the view that surface tension acts to retain the spherical shape of the droplet, whereas the difference between the solid-liquid and solid-vapor interfacial energies acts to enlarge the contact area. In the meantime, viscous dissipation acts to retard the spreading rate, past a constant rate regime.  相似文献   

4.
Experimental studies were performed on the contact line motion of a suspension of PS particles on a glass surface. The base liquids were silicone oil and glycerin. The particle size was in the range of 1-6 μm and the particle loading was 0.5-5 vol %. The drop shape was determined by using a drop image and its reflection and the drop outline was traced to the subpixel level. The Tanner-Voinov-Hoffman relation was valid for suspensions as well as for pure liquids. Silicone oil suspensions showed almost no noticeable change compared with the pure fluid. Glycerin suspensions showed an increase in contact line speed at low particle loading. The difference was due to the microstructure change at the contact line region, and the microstructure change was originated from the wetting characteristics of particles. Particle alignment occurred during the spreading stage for partially wetting particles. The contact line showed a stop-and-go fashioned motion due to surface irregularities. This result can be used as the boundary condition at the contact line in the numerical simulation of suspension spreading.  相似文献   

5.
The hydrodynamics near moving contact lines of two room-temperature polymer melts, polyisobutylene (PIB) and polystyrene (PS), are different from those of a third polymer melt, polydimethylsiloxane (PDMS). While all three fluids exhibit Newtonian behavior in rotational rheological measurements, a model of the hydrodynamics near moving contact lines which assumes Newtonian behavior of the fluid accurately describes the interface shape of a variety of PDMS fluids but fails to describe the interface deformation by viscous forces in PIB and PS. The magnitude of the deviations from the model and the distance along the liquid-vapor interface over which they are seen increase with increasing capillary number. We conclude that the wetting behaviors of PIB and PS are influenced by weak elasticity in these low molecular weight melts and that dynamic wetting is more sensitive to this elasticity than standard rheometric techniques.  相似文献   

6.
The regularities of flow and spreading of disperse systems as two interrelated processes are considered. Differences in the mechanisms of spreading of structured dispersions on solid surfaces are discussed in comparison with the processes of wetting and spreading of Newtonian and non-Newtonian unstructured liquids. It is shown that, for structured dispersions under consideration, their bulk structure-related rheological properties are of prime importance. Surface phenomena occurring at a boundary with a solid substrate affect the character of spreading of such dispersions to the same extent as the interaction of a structured disperse system with the surface affects variations in the properties of adjacent layers of the disperse system.  相似文献   

7.
含氰基离子液体的合成、表征及流变性质研究   总被引:1,自引:1,他引:0  
摘要合成、 表征了一系列新的含氰基咪唑类离子液体. 测定了该离子液体的密度、 熔点及溶解性等物理性质, 研究了其在稳态、 瞬态和动态条件下的流变行为. 结果表明, 当剪切速率在0.1~50 s-1范围内时, 其粘度不随剪切速率的变化而变化, 但随温度升高而降低, 粘流活化能随取代基长度变化呈现规律性变化. 对于1-丁基-3-氰乙基咪唑六氟磷酸盐离子液体, 维持剪切速率不变时, 其剪切应力和粘度均不随时间变化, 且随着温度的升高而降低; 在动态条件下, 在线性粘弹区, 复合粘度和损耗模量G″ 随温度升高而降低. 关键词  相似文献   

8.
The spontaneous spreading of ionic liquids on a fluoropolymer surface (Teflon AF1600) in air is investigated by high-speed video microscopy. Six ionic liquids (EMIM BF(4), BMIM BF(4), OMIM BF(4), EMIM NTf(2), BMIM NTf(2) and HMIM NTf(2)) are used as probe liquids. The dependence of the dynamic contact angle on contact line velocity is interpreted with a hydrodynamic model and a molecular-kinetic model. The usefulness of the hydrodynamic model is rather limited. There is a good correspondence between the molecular dimensions of the liquids and the physical parameters of the molecular-kinetic model. The viscous and molecular-kinetic contributions to energy dissipation are calculated, revealing that energy is dissipated in the bulk as well as at the contact line during dynamic wetting. There are wide ramifications of these results in areas ranging from lubrication and biology to minerals processing and petroleum recovery.  相似文献   

9.
A theoretical model of a capillary driven flow of liquid metal through topography features of rough surfaces has been verified by a study of molten solder (Sn-Pb) spreading over Cu(6)Sn(5)/Cu(3)Sn/Cu intermetallic (IMC) substrates. Flow through microgrooves over a rough IMC substrate is considered as spreading through an isotropic porous medium featuring a network of open microgrooves having predefined free-flow area cross sections. The relative margin of deviation between theoretically predicted and empirically determined locus of points of triple line locations is within the range of 5-15%. This margin supports the validity of the developed, analytically formulated square root power law model for a whole spreading domain in terms of (i) geometry of topographical features of the rough surface (i.e., effective intrinsic permeability, porosity/tortuosity, and microchannel cross section geometry), (ii) wetting/spreading features (equilibrium contact angle and filling factor), and (iii) molten metal/substrate properties (viscosity and surface tension). Experimental data involving triple line kinetics represent the data set of locations of the triple line versus time obtained by in situ monitoring of the spreading of molten metal systems over IMC substrates by using the controlled atmosphere hot stage microscopy.  相似文献   

10.
Inertial spreading occurs at the onset of a droplet wetting a solid; for low viscosity, highly wetting liquids, very high contact line velocities have been observed during this regime. Initial wetting kinetics are so rapid that careful experimental exploration of this phenomenon has only occurred over the past ~ 10 years. Herein, we review recent experimental and computational investigations into inertial spreading. We highlight results and discussion from literature that bear out an initially surprising conclusion: even nanometer scale drops exhibit a regime of early stage wetting kinetics that are well described as inertia dominated. Given this, some focus is placed on reviewing results from atomic scale simulations of inertial wetting and how they can be used to battle the lack of understanding regarding fundamental mechanisms of rapid contact line advancement. To bolster this discussion, new results are also presented from molecular dynamics simulations exploring inertial wetting in metallic systems. It is demonstrated that atomic scale simulations can reveal nanoscale size effects on inertial wetting and that, after accounting for these nanoscale effects, inertial regime spreading data for nanodrops are fully explained by otherwise continuum fluid mechanics theory. Data obtained are thus used to explore the role of order in liquid films near solid surfaces in controlling contact line advancement. In exploring the structure of an ordered liquid layer adjacent to the solid surface that undergoes significant slip during inertial spreading, it is demonstrated that a tensile strain gradient manifests in the layer as the film edge is approached.  相似文献   

11.
Surfactant-mediated wetting and spreading are ubiquitous. Understanding of these phenomena in-depth allows precise tailoring of wetting performance which can contribute to global challenges in the food supply chain, healthcare, ecology and industrial processes. The first part of this review shows how surfactants can be used to improve the efficacy of fertilisers and pesticides in agriculture, enhanced oil recovery, treatment of lung diseases and extinguishing fires involving flammable liquids. The second part provides analysis of recent studies on wetting and spreading over solid substrates. It includes discussion on the effect of surfactants on the outcome of the impact of liquid drops, the wetting state after impact, autophobic effect and spreading kinetics for both partial and complete wetting, including superspreading. Perspectives of future development in the area of surfactant-assisted wetting and spreading on solid substrates are outlined.  相似文献   

12.
The spontaneous spreading of macroscopic drops of nematic liquid crystals on hydrophilic substrates has been investigated by interferometric techniques. There is a complex interplay between the elastic energy, due to antagonist anchoring at the interfaces, and the radial flow in the spreading drop. A relevant parameter appears to be the relative humidity of the atmosphere, because it controls the amount of water molecules adsorbed on the substrate and, therefore, the strength of anchoring defects. The spreading laws differ from the ones of simple wetting liquids, and contact line instabilities coupled to short- (anchoring) or large-scale (disclinations) defects of the nematic film are observed.  相似文献   

13.
The spreading of Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. By controlling the oxygen activity in the furnace, spreading can take place under reactive or nonreactive conditions. As the nucleation of the reaction product under reactive conditions is slow in comparison to the spreading kinetics, in both cases the glass front moves on the metal surface with similar spreading velocities. Spreading can be described using a molecular dynamics model where the main contribution to the wetting activation energy comes from the viscous interactions in the liquid. Enhanced interfacial diffusions in low-oxygen activities (reactive cases) form triple-line ridges that can pin the wetting front and cause a stick-slip motion.  相似文献   

14.
Spreading of small liquid drops over thin porous layers saturated with the same liquid is investigated from both theoretical and experimental points of view. A theory is presented that shows that spreading is governed by the same power law as in the case of spreading over a dry solid substrate. The Brinkman's equations are used to model the liquid flow inside the porous substrate. An equation of the drop spreading is deduced, which shows that both an effective lubrication and the liquid exchange between the drop and the porous substrates are equally important. The presence of these two phenomena removes the well-known singularity at the moving three-phase contact line. Matching of the drop profile in the vicinity of the three-phase contact line with the main spherical part of the drop gives the possibility to calculate the pre-exponential factor in the spreading law via permeability and effective viscosity of the liquid in the porous layer. Unfortunately, the latter dependency turns out to be very weak. Spreading of silicone oils over different microfiltration membranes is carried out. Radii of spreading on time experimental dependencies confirm the theory predictions. Experimentally found coefficients agree with theoretical estimations.  相似文献   

15.
Equilibrium and nonequilibrium molecular dynamics (MD) simulations have been performed in both isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensemble systems. Under steady state shearing conditions, thermodynamic states and rheological properties of liquid n-hexadecane molecules have been studied. Between equilibrium and nonequilibrium states, it is important to understand how shear rates (gamma) affect the thermodynamic state variables of temperature, pressure, and density. At lower shear rates of gamma<1 x 10(11) s(-1), the relationships between the thermodynamic variables at nonequilibrium states closely approximate those at equilibrium states, namely, the liquid is very near its Newtonian fluid regime. Conversely, at extreme shear rates of gamma>1 x 10(11) s(-1), specific behavior of shear dilatancy is observed in the variations of nonequilibrium thermodynamic states. Significantly, by analyzing the effects of changes in temperature, pressure, and density on shear flow system, we report a variety of rheological properties including the shear thinning relationship between viscosity and shear rate, zero-shear-rate viscosity, rotational relaxation time, and critical shear rate. In addition, the flow activation energy and the pressure-viscosity coefficient determined through Arrhenius and Barus equations acceptably agree with the related experimental and MD simulation results.  相似文献   

16.
A series of experiments that clarify how air bubbles become entrained into coatings are described. The contact line dynamics at the air-liquid interface surrounding a fiber is characterized for a typical coating die operating under atmospheric and pressurized conditions. Glycerin and other viscous liquids are used to reveal that a critical fiber speed exists at which air entrainment begins. The observations confirm that the critical capillary number Ca(c) depends on the physical properties of the coating material, in the form of the Morton number. When the liquid supply is pressurized, the experiments show that adjusting the pressure can stabilize the displaced free surface interface at a prescribed location. Controlling the meniscus location in this way eliminates air entrainment. The threshold occurs when the applied pressure balances the shear exerted on the coating by the moving fiber. Using this approach it is possible to eliminate air entrainment and attain stable wetting at very large values of the capillary number, e.g., Ca congruent with 50.  相似文献   

17.
18.
An Interesting kinetic effect in the environmental stress cracking (E.S.C.) of polyethylene has been observed, in which the liquid viscosity plays an important role. E.S.C. of a low density, high melt index polyethylene due to silicone oils has been studied using constant load creep experiments. For relatively low stresses, it has been found that the time to fracture is independent of the viscosity of the silicone oil, all other factors being approximately equal. However, at high stresses, the time to fracture increases with increasing viscosity for a given stress. This effect has been shown to be due to the relative ease with which the liquid penetrates a growing crack and thus always be at the crack front. Times to fracture for viscous liquids at high stresses are longer since crack propagation continues partially with and partially without liquid contact, fracture rate being much slower when not in the presence of the liquid.  相似文献   

19.
Classic theory predicts a unique value of equilibrium contact angle, θo, for a given solid/liquid/fluid system. However, wetting phenomena are often very complicated in practice, with contact angle hysteresis being a major source of problems in interpretation. Contact angle variability is related to several factors, but we consider two which are particularly relevant to polymeric substrates - effects of orientation of molecular chains near the surface and local solid strain at the wetting front. A model is proposed to explain “stick-slip” motion of the triple line.  相似文献   

20.
Ultrafine particles of titanium dioxide (TiO2) are very attractive as a UV protection ingredient in cosmetic products. The UV-scattering behavior of TiO2 suspensions in a silicone oil are studied in relation to rheological properties. To control the dispersion stability of suspensions, two types of polyether-modified silicones are used as dispersants. When the suspensions are prepared with branch-type dispersants in which the polyether groups are incorporated as side chains along the backbone, the flow is shear-thinning even at low shear rates. The appearance of plateaus in the frequency-dependence curves of storage modulus implies the solidlike responses. On the other hand, the suspensions prepared with linear conformation dispersants, in which the silicone group and polyether group are alternately repeated in one long chain, are Newtonian at low shear rates. The suspensions are regarded as liquids, because the storage modulus decreases rapidly in the low-frequency region. The suspension rheology is strongly associated with flocculated structures that are primarily controlled by the interparticle attractions. The differences in rheological behavior can be explained by the differences in the adsorbed conformation of dispersant silicones. From optical measurements, it is confirmed that UV scattering increases with decreasing flocculation degree. Therefore, good agreement is established between rheological properties and UV protection ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号