共查询到17条相似文献,搜索用时 62 毫秒
1.
用 Nd:YAG脉冲激光器产生的1.06 μm激光在空气中烧蚀金属Pb靶产生等离子体,并观测了其时间分辨的发射光谱. 依据光谱线波长、相对强度等参数估算了不同延迟时间等离子体的电子温度;由PbI线的Stark加宽计算得到等离子体的电子密度;讨论了电子温度和电子密度的时间分布特征. 电子温度平均为14500 K、电子密度达到1017 cm-3. 从等离子体产生、发展机制的角度定性探讨了电子温度和电子密度的时间分布特征. 相似文献
2.
用 Nd:YAG脉冲激光器产生的1.06 μm激光在空气中烧蚀金属Pb靶产生等离子体,并观测了其时间分辨的发射光谱. 依据光谱线波长、相对强度等参数估算了不同延迟时间等离子体的电子温度;由PbI线的Stark加宽计算得到等离子体的电子密度;讨论了电子温度和电子密度的时间分布特征. 电子温度平均为14500 K、电子密度达到1017 cm-3. 从等离子体产生、发展机制的角度定性探讨了电子温度和电子密度的时间分布特征. 相似文献
3.
激光诱导Cu等离子体特性研究 总被引:1,自引:0,他引:1
实验在大气环境下测定激光诱导Cu等离子体的时间分辨发射光谱,通过对ICCD门宽、ICCD与激光脉冲延迟、增益、激光能量等参数的调节来达到最佳的时间分辨光谱.利用最佳光谱图,通过测定的光谱强度和Stark展宽计算激光诱导Cu等离子体的电子温度和电子密度,得出激光诱导Cu等离子体的电子温度和电子密度时间演化特性.结果表明在本实验条件下延时100-1000 ns范围内变化时,相应的电子温度范围为15000 K-5000 K,在200 ns-500 ns时下降的很快,在500 ns后电子温度下降的越来越平稳;延时在200-900 ns之间变化,等离子体的电子密度一直在下降,延时200-600 ns下降着延时的增加的平缓,600-900 ns下降的很快,随着时间的演化,电子密度也越来越小. 相似文献
4.
测定了激光诱导铅等离子体中铅原子和离子谱线Stark展宽的时间演化特性以及与缓冲气体压力之间的关系,由此计算得到了等离子体中电子密度的时间演化特性及其与缓冲气体压力之间的关系,实验结果表明,由不同的金属固体材料产生的激光等离子体的动力学性质差异很大,并讨论了形成这种差异的物理机制。 相似文献
5.
本文从实验上研究了不同缓冲气体(He,Ar,N2和Air)中激光Al等离子体的时间分辨发射光谱,研究了原子发射谱线的强度和Stark展宽随延时、缓冲气体性质和压力变化的规律.结果表明原子谱线的强度在3μs左右达到最大值,随着延时的增加,谱线的Stark展宽减小,而缓冲气体压力的增大导致谱线的Stark展宽增大,在实验测定的四种缓冲气体中,Ar气体中谱线的Stark展宽最大. 相似文献
6.
利用能量为150mJ和500mJ的激光击穿空气获得空气等离子体,依据光谱信息,计算得到等离子体电子温度,密度,并探讨了其时间的演化特性,证实:在此过程中,复合相比电离居于主导地位。同时,结果表明:随着延迟时间的增加,谱线强度在300 ns内迅速减小,之后缓慢减小;电子密度和谱线强度的变化规律基本一致;电子温度的衰减近似呈现指数拟合线型,并且激光能量越高,电子温度的衰减越慢。 相似文献
7.
利用空心针-板放电装置产生了大气压等离子体炬,采用光谱法测量了其内部及表面的电子密度. 向空心针中通入氩气,在大气环境中产生了长度为1cm的等离子体炬.实验分别测量了Hα谱线和ArⅠ(696.54nm)谱线,通过反卷积方法分离出其相应的Stark展宽,并由此计算了电子密度.结果发现,采用Hα谱线和ArⅠ(696.54nm)谱线Stark展宽计算得到的等离子体的电子密度分别为1.0×1015cm-3和3.78×1015关键词:
等离子体炬
电子密度
气体温度
Stark展宽 相似文献
8.
利用能量为150mJ和500mJ的激光击穿空气获得空气等离子体,依据光谱信息,计算得到等离子体电子温度,密度,并探讨了其时间演化特性,证实了在此过程中,复合相比电离居于主导地位.同时,结果表明:随着延迟时间的增加,谱线强度在300ns内迅速减小,之后缓慢减小;电子密度和谱线强度的变化规律基本一致;电子温度的衰减近似呈现指数拟合线型,并且激光能量越高,电子温度的衰减越慢. 相似文献
9.
为了提高激光诱导击穿光谱质量,利用Nd:YAG激光器烧蚀土壤样品,研究了磁场作用下的激光诱导等离子体辐射特性。实验结果表明,在相同激光输出能量条件下,随着磁场强度的增大,等离子体的辐射强度逐渐增强。计算可知,当采用的磁场强度为0.5T时,样品元素Al,Fe,Ba和Ti的光谱线强度比无磁场作用时的分别增强了52.35%,46.64%,64.01%和51.73%,光谱信噪比分别提高了45.44%,69.64%,40.26%和41.33%;而等离子体的电子温度和电子密度分别提高了1 355.01K和0.53×1016cm-3。可见,利用磁场约束等离子体的技术是提高激光光谱质量的一种有效方法。 相似文献
10.
为了提高激光诱导击穿光谱质量,利用Nd:YAG激光器烧蚀土壤样品,研究了磁场作用下的激光诱导等离子体辐射特性。实验结果表明,在相同激光输出能量条件下,随着磁场强度的增大,等离子体的辐射强度逐渐增强。计算可知,当采用的磁场强度为0.5 T时,样品元素Al,Fe,Ba和Ti的光谱线强度比无磁场作用时的分别增强了52.35%,46.64%,64.01%和51.73%,光谱信噪比分别提高了45.44%,69.64%,40.26%和41.33%;而等离子体的电子温度和电子密度分别提高了1 355.01 K和0.531016 cm-3。可见,利用磁场约束等离子体的技术是提高激光光谱质量的一种有效方法。 相似文献
11.
用YAG脉冲激光器产生的1.06μm激光,在高真空下轰击Al靶,观测到9条AlⅠ,AlⅡ和AlⅢ的等离子体谱线。利用高分辨率双光栅单色仪和光学多道分析仪(OMA),对谱线的Stark加宽和线型进行了测量。得到Al等离子体的电子密度沿靶面法向的分布,测得电子密度在1.0×l017~1.l×l018cm-3范围。利用谱线峰值法估算了等离子体的温度约为1.5×l05K。测量结果与半经典理论的计算基本符合 相似文献
12.
13.
将门控分幅相机与平面晶体谱仪耦合,构成时间分辨光谱测量系统,对Al激光等离子体的K壳层发射谱进行测量,获得了相对入射激光延迟约1ns,积累时间约200ps的光谱信号。利用稳态碰撞-辐射平衡(CRE)近似条件下的等离子体光谱辐射动力学模型,给出了Al激光等离子体Ly-β线与He-β线强度比以及Ly-γ线与He-γ线强度比与电子温度的函数关系。在此基础上,根据实验谱线强度比,得到激光强度为2.319×1014,1.937×1014和3.946×1014 W/cm2时,等离子体冕区电子温度分别为1.190(1±27%),1.165(1±27%)和1.525(1±27%)keV。 相似文献
14.
在长度为20 cm的石英毛细管内利用两个边缘锋利的中空的针型电极之间的氩气放电产生了高电子密度的大气压等离子体。利用发射光谱对所获得的等离子体的几个重要参数进行了诊断。利用计算机谱线拟合法合成了300 nm附近OH(A-X)的(0-0)转动谱带并通过与测量谱线的比较确定了等离子体的气体温度,根据Hβ谱线Stark展宽法计算了等离子体的电子密度,采用玻尔兹曼曲线斜率法依据测得的有关氩的发射光谱估算了等离子体的电子温度。研究结果表明,这种石英毛细管内弧光放电等离子体的气体温度约为(1 100±50)K;电子密度数量级在1014 cm-3;电子温度约为(14 515±500)K。 相似文献
15.
在星光II激光装置上,采用PET平面晶体谱仪与宽20μm的狭缝构成一维空间分辨光谱测量系统,对金平面靶激光等离子体进行观测,获得了沿靶面法向一维空间分辨的金M带发射谱。在实验谱中观察到了Au元素类Ni离子的电四极跃迁线3p63d10(1S0) 3p53d104d(3/2,5/2)J=1。利用电四极跃迁线对电子密度的敏感特性,开展了金激光等离子体电子密度诊断的尝试,确定出利用该谱线进行电子密度诊断的有效范围大致在1019~4.5×1021cm-3之间。 相似文献
16.
用发射光谱测量激光等离子体的电子温度与电子密度 总被引:9,自引:9,他引:9
本文研究以Ar为缓冲气体,用Nd:YAG激光烧蚀固体表面的等离子体。用光学多道分析仪测量了等离子体的时间分辨发射光谱,用一组MnI谱线的相对强度计算了激光等离子体的电子温度,根据MgI和A1I谱线的Stark展宽计算了等离子体的电子密度。 相似文献
17.
本文对SCB等离子体发射光谱进行了试验研究,在局部热力学平衡条件下,用AlⅠ394.40nm谱线Stark的展宽法测量了SCB等离子体的电子密度;在发射光谱和Saha方程理论的基础上,设计并建立一套测试仪器,时间分辨率为0.1μs,将其测量的电子密度与同种试验条件下的Stark展宽法得到的结果相比较,电子密度的数量级都为1015cm-3-1016cm-3,且随时间的变化的规律相同。 相似文献