首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed measurements of the Seebeck coefficient S(T) in a broad range of temperatures (T = 2–300 K) have been performed for the first time for RB12 dodecaborides (R = Ho, Er, Tm, Lu) in paramagnetic (diamagnetic for LuB12) and antiferromagnetic states. At intermediate temperatures (10–300 K), the thermopower is determined by the interaction of carriers with phonon modes, which are related to the oscillations of rare-earth atoms in the framework of atomic clusters B12. A comparative analysis of the parameters determining photon drag the thermopower related to the phonon drag and the results of galvanomagnetic measurements shows evidence for a significant effect of spin fluctuations on the behavior of charge transport characteristics in RB12 compounds with strong electron correlations.  相似文献   

2.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

3.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

4.
The baric (P ≤ 5GPa) and magnetic-field (H ≤ 5 kOe) dependences of the transverse magnetore-sistance Δρ xx 0 have been measured for p-InAs (R H = 22.5 cm3/C, ρ = 0.15 Ω cm) and the new ferromag-netic semiconductor p-CdGeAs2 (R H = 5 cm3/C, ρ = 0.62 Ω cm), doped with a magnetic impurity (Mn), near the temperature T = 297 K. The dependences Δρ xx 0 (P, H) for p-InAs:Mn and p-CdGeAs2:Mn exhibit a magnetoresistive effect with an increase in pressure, and a pressure-induced magnetoresistance hysteresis is observed in p-CdGeAs2:Mn with a pressure drop.  相似文献   

5.
Thermal expansion and its anomalies in the vicinity of spin-reorientation phase transitions in single crystals of RFe11Ti (R=Y, Tb, Dy, Ho, and Er) compounds are investigated by the tensometric technique in the temperature range 77–400 K. The temperature dependences of the thermal expansion coefficient α(T) are obtained. It is found that the YFe11Ti and HoFe11Ti uniaxial magnetic materials exhibit pronounced anomalies in the α coefficient at T=200 and 290 K. For the TbFe11Ti single crystal, the α coefficient is close to zero in the vicinity of the spin-reorientation phase transition (at T=325 K). For the DyFe11Ti single crystal, which is characterized by two spin-reorientation phase transitions (at T=120 and 250 K), no features in the α(T) dependence are revealed in the region of the low-temperature spin-reorientation phase transition. In the ErFe11Ti single crystal, the specific feature of thermal expansion is observed at T ~ 220 K.  相似文献   

6.
The Hall effect and the magnetoresistance of ferromagnetic Heusler alloys Co2 YAl, where Y = Ti, V, Cr, Mn, Fe, and Ni have been studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. Normal R 0 and anomalous R S Hall coefficients are shown to be maximal in magnitudes in the middle of the 3d period of the periodic table of elements. Coefficient R 0 changes the negative sign to positive sign in going from weak (Y = Ti, V) to strong (Y = Cr, Mn, Fe, and Ni) ferromagnetic alloys. Constant R S is positive and proportional to ρ2.9 in all the alloys. The magnetoresistance of the alloys is not higher than several percent and its magnitude is changed fairly significantly in the dependence on the number of valence electrons z; the magnetoresistance signs vary arbitrarily.  相似文献   

7.
We present new results of analysis of top-quark differential cross sections obtained by the CMS Collaboration in pp collisions in the framework of the z-scaling approach. The spectra are measured over a wide range of collision energy \(\sqrt s = 7,8,13TeV\) and transverse momentum p T = 30?500 GeV/c of top-quark using leptonic and jet decay modes. Flavor independence of the scaling function ψ(z) is verified in the new kinematic range. The results of analysis of the top-quark spectra obtained at the LHC are compared with similar spectra measured in \(\overline p p\) collisions at the Tevatron energy \(\sqrt s = 1.96TeV\). A tendency to saturation of ψ(z) for the process at low z and a power-law behavior of ψ(z) at high z is observed. The measurements of high-p T is observed. The measurements of highspectra of the top-quark production at highest LHC energy is of interest for verification of self-similarity of particle production, understanding flavor origin and search for new physics symmetries with top-quark probe.  相似文献   

8.
Low-field magnetizationM(H) measurements can be used to probe the nature of the screening currents and the interlayer coupling in high-T c cuprates. Here we compare theM(H) behaviour of single crystals of Bi2Sr2CaCu2O8 and fully oxygenated and oxygen reduced YBa2Cu3O7??. In YBa2Cu3O7, theM(H) behaviour is consistent with anisotropic 3D superconductivity whilst in Bi2Sr2CaCu2O8, the surface screening currents are strongly affected by the presence of vortices, implying that the CuO2 planes are coupled via a weak Josephson interaction. In oxygen-deficient YBa2Cu3O6.7 (T c =63K), theM(H) behaviour at low temperatures is similar to that found for Bi2Sr2CaCu2O8, implying that the removal of oxygen from the chains has resulted in a dimensional crossover of the superconducting state in YBa2Cu3O7??. As the temperature approachesT c , the 3D behaviour is eventually restored as thec-axis coherence length ξ c becomes comparable with the interlayer spacingd.  相似文献   

9.
The magnetic structures that form in La1–xRxMn2Si2 (R = Sm, Tb) layered compounds with various concentrations x have been determined by magnetic neutron diffraction and magnetic measurements, and the magnetic phase diagrams have been built. It is shown that the formation of the magnetic structures is dependent not only on exchange interactions, but also on the type of the magnetic anisotropy of a rare-earth atom. It is found that, in La1–xTbxMn2Si2 compounds with 0.2 < x < 0.5, the competition of the Tb–Mn and Mn–Mn interlayer exchange interactions and the existence of a strong uniaxial magnetic anisotropy in the Mn and Tb sublattices leads to the frustrated magnetic state and prevents the formation of the long-range magnetic order in the Tb sublattice.  相似文献   

10.
In this work I present a generalization of f(R, T) gravity, by allowing the speed of light to vary. Cosmological solutions are presented for matter and radiation-dominated universes, the former allowing the universe expansion to accelerate while the latter contemplating a possible alternative to inflationary scenario. Remarkably, standard gravity is always retrieved for a special case of f(R, T).  相似文献   

11.
LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - xCo x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).  相似文献   

12.
The structure and magnetic properties of RFe11TiN compounds (R=Gd or Lu) containing nitrogen are investigated. Magnetic measurements are performed on a magnetometer in magnetic fields up to 100 kOe in the temperature range from 4.2 to 750 K with the use of RFe11TiN single crystals, RFe11TiN powders placed in a ceramic cell, and samples oriented in an external magnetic field. It is found that the nitridation leads to an increase in the Curie temperature and the saturation magnetization. The samples studied are uniaxial over the entire temperature range of magnetic ordering. The magnetic anisotropy decreases upon nitridation. It is demonstrated that, within the local anisotropy model, the decrease in the magnetic anisotropy constant K1 can be explained by the redistribution of the electron density in the vicinity of the crystallographic positions occupied by iron atoms.  相似文献   

13.
We investigate propagations of graviton and additional scalar on four-dimensional anti-de Sitter (AdS4) space using f(R) gravity models with external sources. It is shown that there is the van Dam–Veltman–Zakharov (vDVZ) discontinuity in f(R) gravity models because f(R) gravity implies GR with additional scalar. This clearly indicates a difference between general relativity and f(R) gravity.  相似文献   

14.
The paper reports on an ellipsometric study of the optical properties of RNi5 (R = Y, La, Ce) paramagnetic intermetallic compounds. The dispersion measurements of the refractive index n and of the absorption coefficient k were conducted within a spectral interval 0.083–5.64 eV at room temperature. The behavior of optical interband conductivity with energy is analyzed. The results obtained are discussed in the frame of available information on the electronic band structure of these compounds. The plasma and relaxation frequencies of conduction electrons have been determined.  相似文献   

15.
Systematic ab initio LDA calculations were performed for all the typical representatives of recently discovered class of iron-based high-temperature superconductors: REOFe(As,P) (RE = La, Ce, Nd, Sm, Tb), Ba2Fe2As, (Sr,Ca)FFeAs, Sr4Sc2O6Fe2P2, LiFeAs and Fe(Se,Te). Non-monotonic behavior of total density of states at the Fermi level is observed as a function of anion height relative to Fe layer with maximum at about Δz a ~ 1.37 Å, attributed to changing Fe-As (P, Se, Te) hybridization. This leads to a similar dependence of superconducting transition temperature T c as observed in the experiments. The fit of this dependence to elementary BCS theory produces semiquantitative agreement with experimental data for T c for the whole class of iron-based superconductors. The similar fit to Allen-Dynes formula underestimates T c in the vicinity of the maximum, signifying the possible importance of non-phonon pairing in this region. These results unambiguously demonstrate that the main effect of T c variation between different types of iron-based superconductors is due to the corresponding variation of the density of states at the Fermi level.  相似文献   

16.
Influence of temperature and magnetic field H on magnetism of spherical Gd nanoparticles of different sizes (89, 63, 47, 28, and 18 nm) was studied in the temperature range 250 K < T < 325 K. The particles were obtained by metal vapor condensation in the flow of helium. The particles with d = 18 nm did not show a magnetic transition; their structure is a combination of two cubic phases (FCC1 and FCC2). Large particles remained in the HCP phase and had an admixture of the FCC1 phase, the amount of which decreased as the particle sizes increased; magnetic transition took place at T c = 293 K. The admixture of O2 did not alter the structure but decreased the magnetization σ and magnetic permeability μ. An orientation transition in polycrystalline gadolinium initiated by the magnetic field H was proved in an experiment. The orientation transition in Gd particles smaller than 63 nm, the magnetic structure of which is close to the single-domain structure, occurred near T c without the influence of H.  相似文献   

17.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

18.
We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.  相似文献   

19.
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.  相似文献   

20.
The implications from the existence of a proper Homothetic Vector Field on the dynamics of vacuum anisotropic models in F(R) gravitational theory are studied. The fact that every Spatially Homogeneous vacuum model is equivalent, formally, with a “flux”-free anisotropic fluid model in standard gravity and the induced power-law form of the functional F(R) due to self-similarity enable us to close the system of equations. We found some new exact anisotropic solutions that arise as fixed points in the associated dynamical system. The non-existence of Kasner-like (Bianchi type I) solutions in proper F(R)-gravity (i.e. \(R\ne 0\)) strengthens the belief that curvature corrections will prevent the shear influence into the past thus permitting an isotropic singularity. We also discuss certain issues regarding the lack of vacuum models of type III, IV, VII\(_{h}\) in comparison with the corresponding results in standard gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号