首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
无机-聚合物纳米复合材料是将聚合物与一种或多种无机纳米粒子复合而成的一种材料,它同时具有无机纳米粒子和聚合物的优良特性,在许多重要技术领域具有广泛的应用前景.近20年来,无机-聚合物纳米复合材料的制备及应用备受关注[1~6].包括杂化微凝胶在内的纳米复合微球是无机-聚合  相似文献   

2.
阳离子型微乳液聚合丙烯酰胺的表征   总被引:10,自引:0,他引:10  
自从Hoar[1]和Schulman[2]利用乳化剂、水和油制得均一透明的微乳液以来,微乳液在许多领域中得到广泛应用.Candau[3,4]通过微乳液聚合得到分子量很高(105~106)的纳米级聚合物粒子,且聚合物分子链采取紧密缠绕的构象.Antonietti[5]在对苯乙烯微乳液聚合的研究报道中认为,聚合物分子链是以一种类似于网状交联结构的形态存在的,这些结果表明,通过微乳液聚合所得聚合物可能存在着一些特殊的性质.本文采用阳离子型乳化剂十六烷基三甲基溴化铵(CTAB)和脂肪族醇助乳化剂制备的油包水(W/O)型反相微乳液体系来聚合丙烯酰胺(Am),并与使用相同乳…  相似文献   

3.
以苯乙烯和甲基丙烯酸甲酯混合物作为油相, 采用反相微乳液法制备了AgCl纳米粒子; 通过微乳液原位聚合油相单体得到包含AgCl纳米粒子的聚合乳液; 将聚合乳液与聚偏氟乙烯(PVDF)通过共混法构建了包含AgCl纳米粒子的PVDF共混杂化膜. 紫外-可见光谱、 透射电子显微镜(TEM)及扫描电子显微镜(SEM)等表征结果和超滤实验结果表明, 聚合乳液加入的同时引入了亲水性聚合物和表面亲水的AgCl纳米粒子, 不仅改善了PVDF共混杂化膜的孔隙率和平均孔径, 还显著增强了PVDF共混杂化膜的极性和亲水性, 最终提升了膜的水通量和抗污染性能; 过量聚合乳液加入后不能与PVDF材料均匀共混, 而且AgCl纳米粒子也会在膜中形成团聚物堵塞膜孔隙, 从而削弱了膜的水通量和抗污染性能.  相似文献   

4.
SiO2/聚合物核壳型杂化粒子及其空心结构以其独特的形貌在药物控制释放、催化剂载体、生物医药等领域应用前景广阔,引起了人们的广泛关注。本文着重从乳液聚合法、仿生矿化法等制备方法角度阐述了SiO2/聚合物核壳型杂化粒子及其空心结构的研究进展。乳液聚合制备SiO2/聚合物核壳型杂化粒子简单易行,一般需要预先合成SiO2纳米粒子,其合成过程通常需要一些非理想的条件,如高温高压、极端pH、昂贵或有毒的有机试剂等,而且预先合成的SiO2粒子无法与聚合物实现100%匹配,即总有纯的聚合物粒子存在。相比之下,原位仿生矿化法制备SiO2杂化粒子不仅在环境条件下可进行,而且能够精确控制其纳米尺度的形态及分级有序结构。目前对材料科学家来讲,要使人工合成SiO2/聚合物杂化粒子实现像自然生物硅那样优异的性能,仍然是很大的挑战。  相似文献   

5.
王文清  王立权 《高分子学报》2023,(12):1935-1942
两端系留纳米粒子聚合物是研究末端对聚合物链弛豫行为影响的优选分子模型.本文构建了两端系留纳米粒子聚合物模型,运用粗粒化分子动力学方法研究了两端系留纳米粒子聚合物的特征温度和弛豫行为,探讨了纳米粒子半径和聚合物链长对玻璃化转变温度、结晶温度和介电性能的影响.研究表明,聚合物两端纳米粒子的存在可延缓聚合物链的弛豫并促进结晶,使两端系留纳米粒子聚合物的玻璃化转变温度和结晶温度均增加.研究结果与相关的实验报道吻合,可加深对两端系留纳米粒子聚合物结构和性能的理解.  相似文献   

6.
用二氧化硅 (SiO2 )存在下的乳液聚合法制备了聚苯乙烯 (PSt) 纳米SiO2 复合材料 ,研究了苯乙烯(St)乳液聚合过程中团聚纳米SiO2 的解离与再分散过程及分散的机理 .发现商品纳米SiO2 粒子以团聚体形式存在 ,团聚体大小远超出纳米级范围 .随聚合时间的延长 ,St的转化率逐渐增加 ,而PSt SiO2 复合微胶囊的粒径逐渐减小 ,反应 12 0min后 ,转化率和复合微胶囊粒子的粒径趋于稳定 .透射电镜 (TEM)也显示PSt SiO2 复合微胶囊粒子具有海岛结构 ,而SiO2 粒子的粒径在纳米范围内 ,表明在乳液聚合过程中SiO2 团聚体被逐渐解离 ,并重新分散到纳米尺度 .红外光谱研究发现 ,在乳液聚合过程中 ,除生成PSt均聚物外 ,还在纳米SiO2 表面生成了PSt接枝共聚物 ,改善了无机纳米粒子与聚合物之间的界面相容性 .聚合过程中的反应热和剪切搅拌是团聚体被解离和重新分散的主要原因 ,而生成的聚合物起到隔离作用  相似文献   

7.
利用可控微乳液法合成粒径19~200 nm,且呈球状分布均匀的聚甲基丙烯酸甲酯/聚(异戊二烯-co-苯乙烯)(PMMA/PIS)核壳纳米粒子,通过水合肼产生原位氢的技术,对合成的PMMA/PIS乳液体系进行直接常压氢化,对影响氢化度的因素、聚合物氢化前后结构、热性能进行了研究.结果显示,聚合物粒径、水合肼及双氧水用量等都是影响聚合物的氢化度的因素.研究发现,氢化以PMMA为核,PIS为壳的核壳结构乳液可以显著提高PIS氢化程度,减少氢化过程中凝胶产生.利用FTIR、~1H-NMR、Na_2S_2O_3滴定法测定了乳液的氢化度.结果表明,当聚合物粒径小于200 nm时,乳液氢化度可达到95%以上,且无凝胶现象产生.GPC结果证明了反应是氢化而非凝胶过程.利用TEM、DLS测试了氢化后乳液的核壳结构和粒径.实验结果显示,PMMA/HPIS为核壳纳米结构.TGA结果显示,当氢化度为98%时,聚合物耐热性提高41°C.  相似文献   

8.
以α-烯烃磺酸钠(AOS)为可聚合乳化剂、苯乙烯(St)为非极性单体、甲基丙烯酸甲酯(MMA)为极性单体、二乙烯基苯(DVB)为交联剂、十六烷(HD)为助稳定剂,通过细乳液聚合法制备了聚合物包覆蒽醌类染料的纳米色料。利用透射电子显微镜(TEM)、激光粒度仪(DLS)等研究了可聚合乳化剂、极性单体和交联剂的用量对纳米色料形貌的影响。结果表明:该纳米色料具有明显的核壳结构,且乳液的稳定性好。随着乳化剂用量的增加,粒子粒径变小;少量极性单体的加入有助于得到粒径分布较窄的核壳结构纳米粒子,交联剂和单体彼此极性的差异会导致粒子表面粗糙。以St为聚合单体,当DVB的质量小于St质量的30%时,能够得到结构规整的纳米粒子,超过30%时,纳米粒子表面不再光滑。而以MMA为聚合单体,当DVB的质量为MMA的8%~30%时,粒子表面均凹凸不平。  相似文献   

9.
何晓燕  王萌  张彩芸  强圣璐 《化学通报》2016,79(12):1113-1120
核壳结构聚合物负载型催化剂因其载体材料独特的结构、形貌和性质而具有优异的催化活性,成为了催化化学领域研究的热点。本文综述了聚合物负载金属纳米粒子型核壳结构催化剂,包括球形聚合物刷负载金属纳米粒子、聚合物中空微球负载金属纳米粒子、聚合物实心微球表面包覆金属纳米粒子等类型催化剂的制备及其相应的催化性能,强调了各类载体的组成和结构特点对催化活性及其稳定性的影响。最后总结了该类催化材料的优势和不足,并对其性能和应用进行了展望。  相似文献   

10.
苯乙烯微乳液种子聚合   总被引:21,自引:1,他引:20  
通过观测苯乙烯微乳液种子聚合前后体系内聚合物粒子大小及其分布的变化发现,无论是γ射线还是KPS引发,聚合过程中都没有新的聚合物粒子生成。尽管聚合前体系中存在单体溶胀的胶束,但在聚合过程中这些胶束主要充当单体仓库,自己成核聚合的几率很低。由于微乳液种子聚合体系内,单体量相对较低,聚合物粒子数目很大,其聚合动力学明显不同于常规乳液种子聚合。  相似文献   

11.
以丙烯酸异丁酯(IBA)、甲基丙烯酸二甲氨乙酯(DMAEMA)、丙烯酸羟乙酯(HEA)作为聚合单体,利用种子微乳液聚合制备了一种具有核-壳结构的聚合物纳米胶粒P(DMAEMA-co-IBA)/P(IBA-co-HEA);采用红外光谱仪、动态激光光散射仪、透射电镜分析了所得胶粒的结构和形貌;将叶酸成功嵌入聚合物胶粒,得到直径约293nm的球形载药胶粒,利用药物体外释放测定了药物运载性能.结果表明,所制备的共聚物纳米胶粒呈球形,直径约275nm,粒径分布较窄,并具有核-壳结构;其对药物具有缓释性和pH响应性.  相似文献   

12.
A novel surface modification method for titania nanoparticles is provided via the surface‐initiated photocatalytic polymerization with the aid of acrylic acid (AA) or sodium styrene sulfonate (NaSS). The properties of modified titania nanoparticles are investigated with aqueous electrophoresis measurements, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Then the modified titania is used as Pickering stabilizer for further polymerization and the morphology of the resulted polymer microspheres is characterized by TEM and field‐emission scanning electron microscopy. It is proven that the addition of AA or NaSS for the surface‐initiated polymerization can obviously affect the structure and morphology of the final polymer composite microspheres. The formation mechanism of several kinds of polymer particles is also proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
超声引发无皂乳液聚合制备纳米银/PAAEM复合材料及其表征   总被引:1,自引:0,他引:1  
在不使用气体保护及乳化剂的条件下,超声辐射引发无皂乳液聚合双原位合成纳米银/聚乙酰乙酸基甲基丙烯酸乙酯(PAAEM)复合材料。并通过XRD、FTIR、TEM、HRTEM、XPS和TG等分析方法对其进行表征。结果表明:纳米银粒子具有面心立方结构和球形或近球形形貌,且较均匀地分散在聚合物基体中;纳米银粒子与基体之间的相互作用是纳米银与基体中乙酰乙酸基的羰基氧原子配位所产生的;而且纳米银粒子对基体PAAEM的热学性能有很大影响。  相似文献   

14.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

15.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

16.
A novel strategy to synthesize hybrid metal–polymer nanocomposites has been achieved based on in situ free radical suspension and bulk polymerization techniques. An organometallic precursor complex is dissolved in a liquid monomer phase prior to polymerization, where upon the precursor molecules are immobilized inside the polymer matrix during its formation. In a separate step, metal nanoparticles are then formed by H2-assisted reduction of the precursor in the polymer product in supercritical carbon dioxide (scCO2). The synthesized nanocomposites were characterized by GPC, TGA, SEM and TEM. It is shown that the metal nanoparticles are uniformly distributed inside the polymer matrix and the inclusion of the metal precursor has no significant influence on the polymerization process. The current work represents a simple and universal way to prepare a variety of metal–polymer nanocomposite functional materials.  相似文献   

17.
Ordered mesoporous silica nanoparticles with pore diameter of 5 nm were synthesized by modification of the sol‐gel synthesis method. Post‐synthesis two‐step grafting of thermoresponsive poly(N‐isopropylacrylamide) inside the mesopores of the nanoparticles was carried out by distillation–precipitation polymerization of the methacryloxy‐functionalized mesoporous nanoparticles with N‐isopropylacrylamide monomer. A precise control on the quantity of the grafted polymer was achieved by changing the ratio of monomer to methacryloxy‐functionalized nanoparticles. The polymer‐grafted hybrid nanoparticles obtained were fully characterized by infrared spectroscopy, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, thermal, and gas‐volumetric analyses, which clearly showed presence and thermoresponsive behavior of the polymer inside the mesopores with the preservation of the characteristic mesoporous structure of the nanoparticles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Summary: This work aimed to produce poly(methyl methacrylate) nanoparticles for use in drug encapsulation. The polymer nanoparticles were produced using miniemulsion polymerization technique. Monomer miniemulsion showed moderate stability and polymer average particle size was about 90 nm. PMMA nanoparticles were tested for toxicity in human leukemic cell strain K562 and they did not show any adverse effect on cell viability. Therefore, poly(methyl methacrylate) nanoparticles are suitable to encapsulate antitumor agents.  相似文献   

19.
In this study, stimuli-responsive nanoparticles were prepared by solution polymerization. Two synthesis routes are proposed to synthesize the particles, the monomer route and the polymer/monomer route. For the monomer route, pH and thermal sensitive nanoparticles were synthesized from acrylic acid and N-isopropylacrylamide. For the polymer/monomer route, the pH sensitive nanoparticles were synthesized from chitosan and acrylic acid. The effect of reaction time, initiator concentration and agitation rate on the particle size and the size distribution were investigated. The stimuli-responsive nanoparticles could be directly blended with other polymers to prepare stimuli-responsive functional membranes.  相似文献   

20.
Controlled synthesis of amphiphilic block copolymer nanoparticles in a convenient way is an important and interest topic in polymer science. In this review, three formulations of polymerization-induced self-assembly to in situ synthesize block copolymer nanoparticles are briefly introduced, which perform by reversible addition-fragmentation chain transfer(RAFT) polymerization under heterogeneous conditions, e.g., aqueous emulsion RAFT polymerization, dispersion RAFT polymerization and especially the recently proposed seeded RAFT polymerization. The latest developments in several selected areas on the synthesis of block copolymer nano-assemblies are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号