首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered mesoporous silicas SBA-15 with high loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethoxysilane (TEOS) and triethoxyvinylsilane (TEVS) templated with a triblock copolymer.  相似文献   

2.

Background

Enzymes display high reactivity and selectivity under natural conditions, but may suffer from decreased efficiency in industrial applications. A strategy to address this limitation is to immobilize the enzyme. Mesoporous silica materials offer unique properties as an immobilization support, such as high surface area and tunable pore size.

Results

The performance of a commercially available feruloyl esterase, E-FAERU, immobilized on mesoporous silica by physical adsorption was evaluated for its transesterification ability. We optimized the immobilization conditions by varying the support pore size, the immobilization buffer and its pH. Maximum loading and maximum activity were achieved at different pHs (4.0 and 6.0 respectively). Selectivity, shown by the transesterification/hydrolysis products molar ratio, varied more than 3-fold depending on the reaction buffer used and its pH. Under all conditions studied, hydrolysis was the dominant activity of the enzyme. pH and water content had the greatest influence on the enzyme selectivity and activity. Determined kinetic parameters of the enzyme were obtained and showed that Km was not affected by the immobilization but kcat was reduced 10-fold when comparing the free and immobilized enzymes. Thermal and pH stabilities as well as the reusability were investigated. The immobilized biocatalyst retained more than 20% of its activity after ten cycles of transesterification reaction.

Conclusions

These results indicate that this enzyme is more suited for hydrolysis reactions than transesterification despite good reusability. Furthermore, it was found that the immobilization conditions are crucial for optimal enzyme activity as they can alter the enzyme performance.
  相似文献   

3.
《Solid State Sciences》2004,6(5):489-498
The addition of alcohol to the synthesis of a mesoporous silica material will induce a transition from hexagonal (MCM-41) to cubic (MCM-48) to a lamellar phase and finally to silica spherical particles (SSP), as the alcohol adopts the role of cosurfactant. This will evolve to a cosolvent function as the alcohol concentration is further increased. X-ray diffraction suggests that a phase regression phenomenon occurs, in contradiction with the g-value. Transmission electron microscopy reveals the structure and the microstructure of the mesoporous silica spherical particles. It is shown that the SSP consists of a core of a truncated octahedron with the MCM-48 cubic structure and radial cylindrical pores grown on the surface of the truncated octahedron. This structure model and a possible formation mechanism are discussed.  相似文献   

4.
In this study, mesoporous silica materials with tuned pores and surface areas were successfully synthesized by adjusting the amount of applied hexane and controlling the hydrothermal temperature. The synthesized silica materials were then functionalized by an amine group to produce solid base catalysts and be applicable as efficient heterogeneous base catalysts for the Henry reaction. The mesoporous silica catalysts possessing large-pores and surface area expose their active catalytic sites and thereby improve contacts with reactants fulfilling the reactions expeditiously in comparison with solid base catalysts possessing small-pores and surface area. The results indicated that the yield of the products is significantly dependent on the structure of the applied solid base catalysts. The modulated large-pore solid base catalysts presented high catalytic activity in Henry reactions and could be reused for five consecutive cycles.  相似文献   

5.
6.
A novel glucose-responsive controlled release of insulin system is constructed through coating enzyme multilayers on mesoporous silica particles (MSPs). The MSPs serve as the drug reservoir, and the enzyme multilayers cross-linked with glutaraldehyde act as a valve to control the release of insulin in response to the external glucose level.  相似文献   

7.
In this article, we report a systematic investigation on the morphologies of SBA-15 type large-pore periodic mesoporous organosilicas templated by the block copolymer P123. By tuning synthetic parameters such as stirring, acidity, reaction ratio, reaction duration, and autoclaving, a wide spectrum of unique primary particle morphologies, such as the spindle-, pearl-, diamond-, rod-, and platelike particles, and nanoparticles has been prepared. These primary particles were found to self-assemble in solution to form various large hierarchical macrostructures, such as mesostructured necklaces and cobweb-supported necklaces. The assembling process was elucidated with the information observed at different stages of reaction. Stirring, reaction duration, and autoclaving were identified to be the key factors affecting the efficiency and degree of the self-assembly process. A nucleation-accretion mechanism for the formation of various PMO primary particles was proposed by examining the relation between the external morphologies and the underlying mesostructure.  相似文献   

8.
Porous chitosan macrospheres were prepared at the first time by using silica particles as porogen, and the optimal weight ratio of silica to chitosan during preparation was determined. Scanning electron microscopy micrographs showed that the support with silica as porogen (support I) had a much more porous surface structure than the support without porogen (support II). Both supports were applied to immobilize β-galactosidase from Aspergillus oryzae. Much higher specific activity and yield of galactose hydrolysis products were observed for the support I. Properties of both immobilized enzyme were determined and compared with the free enzyme, satisfactory results were obtained in thermostability, pH arid operational stability, Michaelis constants K m and in maximum velocity of hydrolysis (V m). Suggested method allow to prepare chitosan macrospheres as immobilized enzyme carrier with moreporous surface structure and more active reaction groups.  相似文献   

9.
10.
The dehydration, condensation, and isomerization of linalool and linalyl acetate occur over the H-and dealuminated forms of zeolites FAU(Y), BEA, MOR, and OFF and mesoporous aluminosilicate MCM-41 at 373–453 K. The yields of linalool isomerization to geraniol and α-and β-terpineols are low. The use of linalyl acetate enhances isomerization; the highest yields of the products of linalyl acetate rearrangement (geranyl acetate and terpinyl acetate) are achieved over DeAlBEA(277). Dehydration produces various C10H16 terpenic hydrocarbon isomers.  相似文献   

11.
12.
Mesoporous silica particles with narrow size distribution were obtained by a seeded growth process. Depending on the size of seeds and on the time of addition of reactants, the size of particles can be varied between 300 and 1000 nm. In a second step the dye fluorescein isothiocyanate can be embedded. The structure of these new silica particles with low density was investigated by SEM, XRD, BET, and confocal microscopy.  相似文献   

13.
A new mesoporous micelle-templated silica (MTS) route for enzyme encapsulation is presented. The pore structure is given by a new association oflecithin (double chain surfactant) and dodecylamine as cosurfactant. To enhance and to well protect the enzyme activity, lactose was loaded in the synthesis. The mixed-micelles give after the addition of tetraethyl orthosilicate a well-ordered mesoporous material with a spongelike rigid structure stable after calcination at 550 degrees C. The size of the pores lies between 30 and 40 A, matching well with the size of the lipases. The activity of this heterogeneous catalyst was tested in the hydrolysis of the ethylthiodecanoate. These new biocatalysts were very active, more than hydrophobic sol-gel materials and commercially available sol-gel encapsulated lipase. This new MTS synthesis route allows one to encapsulate in one-step various enzymes, even those that are very fragile.  相似文献   

14.
Silanol species in phenylene-bridged periodic mesoporous organosilica (PMO), templated via tri-block copolymer Pluronic P123 and thus characterized by large pores and amorphous wall structure, have been characterized by means of FT-IR spectroscopy. Investigation has been carried out on both the naked sample outgassed at different temperatures and the sample when interacting with molecular probes able to form H-bonding (ammonia and carbon monoxide). After outgassing at 773 K, the material shows both isolated silanols and silanols engaged in "intraframework" H-bonding with the pi-cloud of structural aromatic rings. Interaction with ammonia showed that a fraction of these species is inaccessible, being probably located inside the pore walls. Thermal treatment above 673 K causes the appearance of SiO3(OH) species formed as a consequence of the cleavage of some Si-C bonds. The presence of hydroxyls slightly more acidic than isolated silanols has been evidenced: these are interpreted as perturbed geminal species.  相似文献   

15.
Selective extraction of low molecular weight (LMW) proteins and peptides from complex biological samples plays an important role in the discovery of useful biomarkers and signaling molecules. Various methods, such as solid-phase extraction (SPE), ultrafiltration, and size-exclusion chromatography have been developed for such extraction purpose. In this study, we present, to our knowledge, the first demonstration of alkyl-diol@SiO2 mesoporous material MCM-41 (alkyl-diol group on the external surface of mesoporous material) for selective extraction of LMW proteins and peptides from complex biological samples. The adsorption kinetics of LMW proteins, the influence of pH on adsorption and the desorption recovery by different elution solvents were investigated by using standard proteins as model samples. It was demonstrated that the modification of alkyl-diol group on the external surface could efficiently decrease the adsorption of HMW protein and increase the desorption recovery of LMW protein. Furthermore, the mesoporous materials were applied to selectively extract LMW proteins and peptides (<10 kDa) from crude human plasma. And the modified MCM-41 material had much better extraction selectivity and efficiency for LMW proteins and peptides than unmodified one.  相似文献   

16.
Colloidal crystals formed by polymer-grafted silica particles were immobilized by a stepwise procedure consisting of gelation by radical copolymerization followed by solidification by ring-opening radical polymerization. In the first step, the poly(methyl methacrylate) (PMMA)-grafted silica colloidal crystal suspension was incorporated into the gel without altering the crystal structure by copolymerization of cross-linker, 1,2-dimethylacryloyloxyethane (DME) and methyl methacrylate (MMA). In the second step, ring-opening radical polymerization was performed after substituting the solvent with vinylidene-1,3-dioxolane. By this two-step procedure, the silica particle array of colloidal crystals was immobilized and made into durable material.  相似文献   

17.
Highly ordered rod-like large-pore periodic mesoporous organosilica (PMO) was successfully synthesized at low acid concentration with the assistance of inorganic salt using triblock copolymer P123 as a template. The roles of inorganic salt and acidity in the production of highly ordered mesostructure and the morphology control of PMOs were investigated. It was found that the inorganic salt can significantly widen the range of the synthesis parameters to produce highly ordered 2D hexagonal pore structure of p6mm symmetry. However, the uniform rod-like PMOs can only be synthesized in a narrow range of acid and salt concentrations, which were sensitive to induction time. The adsorption of lysozyme on PMO was studied at different pH values in comparison with adsorption on pure silica material under controlled morphology and pore structure. It was found that the adsorption capacity of lysozyme on the PMO was lower than that on pure SBA-15 silica material and the adsorption amounts are larger at pH 9.6 than at 7.0 for both materials. The results show that the electrostatic interaction between lysozyme and PMO/SBA-15 surface is more dominant than the hydrophobic forces and the interaction of neighboring lysozyme molecules also plays an important role.  相似文献   

18.
Periodic mesoporous benzene-silicas with large pores of 6.0 to 7.4 nm in diameter are synthesized using triblock copolymer as a template. These mesoporous materials have a well-defined hexagonal rod morphology and high thermal stability up to 823 K in air.  相似文献   

19.
New concept on the promotion of immobilization and catalytic activity of enzyme on mesoporous silica through template micelles is proposed and realized in this paper. Proper P123 templates are controllable retained in the as-synthesized SBA-15, not only to anchor the horseradish peroxidase (HRP) guest, but also to establish the crowding-like microenvironment around the enzyme. The influence of retaining templates on the pore structure of SBA-15, immobilization, and catalytic activity of HRP is studied, and the possible process of template removal is proposed. Ethanol refluxing of 6 h is conformable to prepare the optimal mesoporous support characterized with the retained templates of about 8%. With the assistance of retained templates in SBA-15, up to 49 mg g(-1) of HRP can be immobilized, 100% more than that on calcined SBA-15. Furthermore, the thermal stability, the resistance of pH variation and denaturing agent urea, and the recycle usage of HRP immobilized are obviously elevated, paving a novel and low-cost route to develop enzyme catalysts.  相似文献   

20.
In this article, we report the synthesis of methylene-bridged periodic mesoporous organosilicas (PMOs) of the SBA-15 type. The materials were characterized by SAXS, BET, NMR, FESEM, and TEM. It was found that the synthesis of methylene-bridged SBA-15 PMOs requires more rigorous conditions than that of SBA-15 PMOs bearing organic bridges other than methylene. A mild acidic environment, which slows down the hydrolysis and condensation rates of the precursor, with the assistance of a salt, which enhances precursor-template interaction, should be used to synthesize high-quality large-pore methylene-bridged PMOs. We attributed this to the fast hydrolysis and condensation rates and the rigid backbone of precursor 1,2-bis(triethoxysilyl)methylene. By examining and comparing the synthesis of three large-pore PMOs with different bridges, we concluded that the inductive, bridging, and conformation effects of the organic bridging group play an important role in the synthesis of large-pore PMO materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号