首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kombucha is a traditional beverage of sweetened black tea fermented with a symbiotic association of acetic acid bacteria and yeasts. In this study, kombucha fermented beverage (KFB) appeared to include nine chemical groups (alcohols, acids, lactones, condensed heterocyclic compounds, antibiotics, esters, aldehydes, fatty acids, and alkaloids) of many bioactive metabolites, as elucidated by gas chromatography–mass spectrometry (GC-MS) and IR spectra. The fermented metabolic components of KFB seem collectively to act in a synergistic action giving rise to the antimicrobial activity. Four types of kombucha preparations (fermented, neutralized, heat-treated and unfermented) were demonstrated with respect to their antimicrobial activity against some pathogenic bacterial and fungal strains using agar well diffusion assay. KFB exerted the strongest antimicrobial activities when compared with neutralized and heat-treated kombucha beverages (NKB and HKB). Staphylococcus aureus ATCC6538 (S. aureus) and Escherichia coli ATCC11229 (E. coli) were the organisms most susceptible to the antimicrobial activity of kombucha beverage preparations. Finally, the KFB preparation showed remarkable inhibitory activity against S. aureus and E. coli bacteria in a brain heart infusion broth and in some Egyptian fruit juices (apple, guava, strawberry, and tomato). These data reveal that kombucha is not only a prophylactic agent, but also appears to be promising as a safe alternative biopreservative, offering protection against pathogenic bacteria and fungi.  相似文献   

2.
It is established that food waste can be repurposed to extend its lifecycle and decrease its carbon footprint. In this work, SCOBY (symbiotic culture of bacteria and yeast) waste from kombucha tea production has been repurposed as a catalyst support. Copper nanoparticles (Cu NPs) have been embedded in a piece of treated SCOBY via an in-situ method which enabled the catalyst, inCu/t-SCOBY, to be easily recycled. In addition, inCu/t-SCOBY catalyzed the full reduction of 4-nitrophenol in an excess of sodium borohydride (NaBH4) within 20 minutes. After 6 additional catalytic cycles, the catalyst maintained up to 50% of its performance in the first cycle. Characterization of the catalyst has also been done to understand the mechanism of action and interactions occurring between t-SCOBY and Cu NPs. The results of this work clearly present a proof-of-concept in utilizing porous wastes materials such as SCOBY as catalyst supports, allowing metallic NPs to be efficacious and practical heterogenous catalysts.  相似文献   

3.
Kombucha is a fermented beverage. Its consumption has significantly increased during the last decades due to its perceived beneficial effects. For this reason, it has become a highly commercialized drink that is produced industrially. However, kombucha is still also a homemade beverage, and the parameters which, besides its organoleptic characteristics, define the duration of its potential beneficial properties over time, are poorly known. Therefore, this study aimed to determine the effect of 9-month storage at 4 °C with 30-day sampling on the pH, total phenolic, and flavonoid contents, free radical scavenging properties of kombucha fermented from black tea. Our results highlighted that, after four months, the phenolic content decreased significantly from the initial value of 234.1 ± 1.4 µg GAE mL−1 to 202.9 ± 2.1 µg GAE mL−1, as well its antioxidant capacity tested by two in vitro models, DPPH, and ABTS assays. Concomitantly, the pH value increased from 2.82 to 3.16. The novel findings of this pilot study revealed that kombucha from sugared black tea can be stored at refrigerator temperature for four months. After this period the antioxidant properties of kombucha are no longer retained.  相似文献   

4.
Fungal contamination of food causes health and economic concerns. Several species of lactic acid bacteria (LAB) have antifungal activity which may inhibit food spoilage fungi. LAB have GRAS (generally recognised as safe) status, allowing them to be safely integrated into food systems as natural food preservatives. A method is described herein that enables rapid screening of LAB cultures for 25 known antifungal compounds associated with LAB. This is the first chromatographic method developed which enables the rapid identification of a wide range of antifungal compounds by a single method with a short analysis time (23 min). Chromatographic separation was achieved on a Phenomenex Gemini C18 100A column (150 mm?×?2.0 mm; 5 μm) by use of a mobile-phase gradient prepared from (A) water containing acetic acid (0.1%) and (B) acetonitrile containing acetic acid (0.1%), at a flow rate of 0.3 µL min?1. The gradient involved a progressive ramp from 10–95% acetonitrile over 13 min. The LC was coupled to a hybrid LTQ Orbitrap XL fourier-transform mass spectrometer (FTMS) operated in negative ionisation mode. High mass accuracy data (<3 ppm) obtained by use of high resolution (30,000 K) enabled unequivocal identification of the target compounds. This method allows comprehensive profiling and comparison of different LAB strains and is also capable of the identification of additional compounds produced by these bacteria.  相似文献   

5.
Three strains of Ganoderma tsugae (CCRC36065, CCRC37034, CCRC37038) and three strains of Ganoderma lucidum (CCRC36021, CCRC37029, CCRC37033) were cultivated. Their triterpenoid patterns of the fruit body were analyzed by reverse phase HPLC using a gradient elution of acetonitrile/2% acetic acid (1/4 and 1/2). The triterpenoid patterns of G. tsugae and G. lucidum are different. But similar 2 and 3 dimensional patterns are obtained among three strains of G. tsugae. Different patterns are found among different strains of G. lucidum. Ganoderic acid A( 1 ), B( 2 ), C( 3 ) and D( 4 ) were isolated from the ethanol extract of G. tsugae.  相似文献   

6.

The cholesterol-lowering properties of 12 lactic acid bacteria (LAB) in the absence or presence of 0.3% bile salts were assessed and compared quantitatively and qualitatively in vitro. A new, more sensitive and cost-effective high-performance thin-layer chromatography method combined with digital image evaluation of derivatised chromatographic plates was developed and validated to quantify cholesterol in LAB culture media. The performance of the method was compared with that of the o-phthalaldehyde method. For qualitative assessment, assimilated fluorescently tagged cholesterol was visualised by confocal microscopy. All LAB strains exhibited a cholesterol-lowering effect of various degrees (19–59% in the absence and 14–69% in the presence of bile salts). Lactobacillus plantarum LAB12 and Pentosaceus pentosaceus LAB6 were the two best strains of lactobacilli and pediococci. They lowered cholesterol levels by 59% and 54%, respectively, in the absence and by 69% and 58%, respectively, in the presence of bile salts. Confocal microscopy showed that cholesterol was localised at the outermost cell membranes of LAB12 and LAB6. The present findings warrant in-depth in vivo study.

(A) 3D plots based on scan at 525 nm of (B) derivatized HPTLC plate of separated cholesterol and (C) confocal microscopic image showing the localisation of NBD-cholesterol assimilated by LAB

  相似文献   

7.
Reduced sulfur compounds produced by the metabolism are the one of the major problems in aquaculture. In the present study, herbivorous fishes have been cultured as biomanipulators for secretions of slime, which enhanced the production of greenwater containing beneficial bacteria. The genes encoding soxB which is largely unique to sulfur-oxidizing bacteria (SOB) due to its hydrolytic function has been targeted for examining the diversity of SOB in the green water system of coastal aquaculture. Novel sequences obtained based on the sequencing of metagenomic clone libraries for soxB genes revealed the abundance of SOB in green water system. Phylogenetic tree constructed from aligned amino acid sequences demonstrated that different clusters have only 82–93% match with Roseobacter sp., Phaeobacter sp., Roseovarius sp., Sulfitobacter sp., Ruegeria sp., and Oceanibulbus sp. The level of conservation of the soxB amino acid sequences ranged from 42% to 71%. 16S rRNA gene analyses of enrichment culture from green water system revealed the presence of Pseudoxanthomonas sp., which has 97% similarity with nutritionally fastidious Indian strain of Pseudoxanthomonas mexicana—a sulfur chemolithotrophic γ-proteobacterium. Our results illustrate the relevance of SOB in the functioning of the green water system of coastal shrimp aquaculture for oxidation of reduced sulfur compounds, which in turn maintain the sulfide concentration well within the prescribed safe levels.  相似文献   

8.
One new cyclic tetrapeptide cyclic-(Tyr-Ala-Leu-Ser) (1) along with four natural compounds firstly obtained 3H-imidazole-4-carboxylic acid (2), 2-methyl-3H-imidazole-4-carboxylic acid (3), 3-ethylidene-6-isopropyl-piperazine-2,5-dione (4), and 3-isobutylidene-6-methyl piperazine-2,5-dione (5) have been isolated from the coral derived endophytic bacteria Brevibacterium sp. L-4 collected from the South China Sea. Their structures were elucidated through spectroscopic techniques including NMR (1D and 2D), MS, and EA, and their relative configurations were also assigned by NMR analysis.  相似文献   

9.
Microalgae were screened from seawater for greenhouse gas CO2 fixation and d-lactic acid production by self-fermentation and tested for their growth rate, starch content, and conversion rate from starch into d-lactic acid. More than 300 strains were isolated, and some of them were found to have suitable properties for this purpose. One of the best strains, Nannochlorum, sp. 26A4, which was isolated from Sakito Island, had a starch content of 40% (dry weight), and a conversion rate from consumed starch into d-lactic acid of 70% in the dark under anaerobic conditions. The produced d-lactic acid showed a high optical purity compared with the conventional one. The proposed new d-lactic acid production system using Nannochlorum sp. 26A4 should also be an effective technology for greenhouse gas CO2 fixation and/or conversion into industrial raw materials.  相似文献   

10.
Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin.  相似文献   

11.
Eight new metabolites, including five new sesquiterpenoids, 10,11‐epoxyguaian‐10‐ol ( 1 ), 10,11‐epoxyguaian‐13‐ol ( 2 ), a new backbone sesquiterpene rearranged from guaiane ( 3 ), two 1,5 : 1,10‐disecoguaianes, 4 and 5 , two new dihydroisocoumarins, 7‐chloromellein‐4‐ol ( 6 ) and 7‐chloromellein‐5‐ol ( 7 ), and one new tetralone, 7‐chloroscytalone ( 8 ), were isolated from the mutant strain G‐444 of Tubercularia sp. TF5, an endophytic fungus of Taxus mairei, along with ten known compounds, 3,4‐dihydro‐4,8‐dihydroxy‐2H‐naphthalen‐1‐one ( 9 ), (3R,4S)‐4‐hydroxymellein ( 10 ), 5‐formylmellein ( 11 ), 5‐carboxymellein ( 12 ), sporogen‐AO1 ( 13 ), tuberculariols A ( 14 ) and B ( 15 ), hymatoxin E ( 16 ), 4‐oxo‐4H‐pyran‐3‐acetic acid ( 17 ), and penicillic acid ( 18 ). Their structures were elucidated by spectroscopic analyses including HR‐ESI‐MS, 1D‐ and 2D‐NMR (HMQC, HMBC, 1H,1H‐COSY and NOESY). The antimicrobial activities of 1 – 8 were evaluated, but none showed any substantial effect.  相似文献   

12.
A cellulase-producing mesophilic fungal strain, named G5, was isolated from the acidic wastewater and mud of a tin mine and identified as Phialophora sp. based on the internal transcribed spacer sequence. The volumetric activities and specific activities of cellulase induced by different carbon sources (Avicel, corn cob, wheat bran and corn stover) were compared. The cellulase complex of Phialophora sp. G5 exhibited the optimal activities at 60–65 °C and pH 4.0–5.0, and had good long-term thermostability at 50 °C. Compared with the commercial cellulase (Accellerase 1500, Genencor), the enzyme under study showed 60% and 80% of the capacity to hydrolyze pure cellulose and natural cellulose, respectively. This is the first study to report that a cellulytic enzymes complex from Phialophora genus, and the superior properties of this enzyme complex make strain G5 a potential microbial source to produce cellulase for industrial applications, and the production ability could be improved by mutagenesis.  相似文献   

13.
Abstract

A possible aerobic degradation mechanism for polyacrylate (PA) was examined with acrylic oligomer-utilizing bacteria (Microbacterium sp., Xanthomonas maltophilia, and Acinetobacter sp.), using a model compound (1,3,5-pentane tricarboxylic acid, PTCA). Acyl-coenzyme A synthetase activities were detected with dialyzed cell-free extracts of PTCA-utilizing bacteria toward PTCA, PA 500, and PA 1000. This result suggested that PA is activated by coenzyme A and metabolized via PA-coenzyme A. Metabolic products formed from PTCA were detected in culture filtrates and reaction mixtures of washed cells. Fraction A was detected as a main metabolite by high-performance liquid chromatography. A small amount of fraction B was concomitant with fraction A. Also, another fraction, C, was detected. These intermediate metabolites were characterized by LC-MS as 1,3,5-(1- or 2-pentene)tricarboxylic acid for fractions A and B and as 1,3,5-(2-oxopentane)tricarboxylic acid for fraction C. Fraction A was metabolized far faster than fraction B. Fraction B was thought to be an artifact formed from fraction A under alkaline conditions. Thus PTCA and also PA seemed to be metabolized by the mechanism similar to β-oxidation of fatty acids. The degradation of PTCA by washed cells was slower than that by growing cells and was inhibited by 5 mM NaN3. This suggests that the metabolism is linked to a respiratory chain of bacteria.  相似文献   

14.
One new diterpenoid, xylarenolide ( 1 ), and three new sesquiterpenoids, xylaranol A ( 2 ), xylaranol B ( 3 ), and xylaranic acid ( 4 ), were obtained from the fungal strain Xylaria sp. 101, which was isolated from the fruiting body of Xylaria sp. collected in Gaoligong Mountain, Yunnan Province. Their structures were elucidated by spectroscopic analyses, including 1D‐ and 2D‐NMR experiments, and by HR‐Q‐TOF mass spectrometry. Their antimicrobial activities were evaluated.  相似文献   

15.
This study presents the biodecolorization potential of basidiomycete fungi Trametes hirsuta, Pycnoporus sp., and Irpex sp. for different reactive dyes viz. Reactive Red 120, Remazol Brilliant Blue R (RBBR), Reactive Orange G, and Reactive Orange 16 under static and shaking conditions. The screening trials revealed that T. hirsuta exhibited maximum potential (83.75 %) for biodecolorization of RBBR dye under static conditions after the fifth day of incubation. However, the rate of biodecolorization of RBBR dye by Pycnoporus sp. was much slow and reached maximum (81.25 %) after 15 days of incubation under shaking conditions. By process optimization, enhanced decolorization (91.2 %) of RBBR by T. hirsuta was achieved at pH 5.5 within 24 h using a defined salt medium amended with p-coumaric acid under static conditions. pH was found to be an important parameter for the enzymatic system involved in RBBR dye decolorization by T. hirsuta and Pycnoporus sp. Biodecolorization of RBBR dye was determined by a reduction in optical density at the wavelength of maximum absorbance (λ, 578 nm) by UV–vis spectrophotometer. The shift in maximum wavelength toward shorter/longer wavelength in UV–vis scanning spectrum revealed the degradation of RBBR dye into different transformation products.  相似文献   

16.
A total of 20 of isolates of lactic acid bacteria (LAB) were selected and screened for antagonistic activity against clinical strains of 30 clinical isolates of extremely drug-resistant (XDR) Acinetobacter baumannii using the well diffusion assay method. Results showed that 50% of the highly LAB strains possessed inhibitory activity against (up to 66%) of the XDR A. baumannii strains tested. The supernatant of the twenty LAB strains was subjected to gas chromatography mass spectrometry (GCMS) revealed that the common compound found in the active isolates against XDR A. baumannii was 3-Isobutyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, a known potential diketopiperazine group. The molecular docking study against potential antibacterial targets with selected ligands was performed to predict the binding mode of interactions, which is responsible for antibacterial activity. The docking analysis of the potent compounds supported the potential antibacterial activity exhibiting high inhibition constant and binding affinity in silico.  相似文献   

17.
The intrinsic acid‐base properties of the hexa‐2′‐deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1?G2?G3?C4?C5?T6)=(HNPP)5?] have been determined by 1H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single‐strand conditions (i.e., 10 % D2O, 47 °C, I=0.1 M , NaClO4). These results quantify the release of H+ from the two (N7)H+ (G?G), the two (N3)H+ (C?C), and the (N1)H+ (A) units, as well as from the two (N1)H (G?G) and the (N3)H (T) sites. Based on measurements with 2′‐deoxynucleosides at 25 °C and 47 °C, they were transferred to pKa values valid in water at 25 °C and I=0.1 M . Intramolecular stacks between the nucleobases A1 and G2 as well as most likely also between G2 and G3 are formed. For HNPP three pKa clusters occur, that is those encompassing the pKa values of 2.44, 2.97, and 3.71 of G2(N7)H+, G3(N7)H+, and A1(N1)H+, respectively, with overlapping buffer regions. The tautomer populations were estimated, giving for the release of a single proton from five‐fold protonated H5(HNPP)±, the tautomers (G2)N7, (G3)N7, and (A1)N1 with formation degrees of about 74, 22, and 4 %, respectively. Tautomer distributions reveal pathways for proton‐donating as well as for proton‐accepting reactions both being expected to be fast and to occur practically at no “cost”. The eight pKa values for H5(HNPP)± are compared with data for nucleosides and nucleotides, revealing that the nucleoside residues are in part affected very differently by their neighbors. In addition, the intrinsic acidity constants for the RNA derivative r(A1?G2?G3? C4?C5?U6), where U=uridine, were calculated. Finally, the effect of metal ions on the pKa values of nucleobase sites is briefly discussed because in this way deprotonation reactions can easily be shifted to the physiological pH range.  相似文献   

18.
In this study, the fatty acid contents of some Astragalus L. (Fabaceae) species from Turkey were determined by GC and GC-MS techniques. The seed oils of Astragalus sp. (A. echinops Aucher ex. Boiss., A. subrobustos Boriss., A. jodostachys, Boiss. & Buhse., A. falcatus Lam., A. fraxinifolius DC.) contained linolenic (between 23–41.%), linoleic (23–37%), and oleic acids (8–19%) as the major components. Fatty acid composition of the studied Astragalus taxa showed uniform fatty acid patterns. Palmitic and stearic acids were the major saturated fatty acids in the seed oils. The amounts of unsaturated fatty acids were higher than saturated fatty acids. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 526–528, November–December, 2006.  相似文献   

19.
Specific Pd‐based organometallic complex, in particular the [Pd(η1‐CH2? CH=CH2)(P? N? P’)]BF4 was used for the assembly of chemically modified Screen Printed Electrodes (SPEs) and their electrochemical reactivity was also investigated. For this purpose potassium ferricyanide, hexaammineruthenium(III) chloride, sodium hexachloroiridate‐(III) hydrate, ascorbic acid (AA), uric acid (UA), acetaminophen (Ac), guanine (G) and adenine (A) were used to study the electron‐transfer processes, which occurred at modified SPEs, fabricated by using the [Pd(η1‐CH2? CH=CH2)(P? N? P’)]BF4, applying the drop casting procedure. Interesting results were obtained in the case of the guanine (G) quantitative detection, especially in terms of a wide range of concentration (2.5–40 nM), an high sensitivity (of 49.0 A M?1 cm?2), a low detection limit (LOD=1.0 nM) and a fast response time (of t=2 s). The intra‐electrode reproducibility (RSD%) was <1 % for the same SPE used for each point of the calibration plot. The inter‐electrode reproducibility (RSD%), estimated by using different SPEs for each single point of the quantitative calibration graph, ranging from 5 to 10 %, better than that exhibited by other different chemical sensors, described in literature, and reported in this work for comparison. In addition, the high selectivity of the chemically modified sensors toward the oxidation of guanine, exhibited in presence of a mixture of G+A, in the same electrochemical bath solution, could be related to the different electro‐catalytic mechanisms, as demonstrated by the XPS study. This chemical sensor prototype could be very promising for bio‐medicine applications.  相似文献   

20.
The effect of combined treatment of antimicrobial coatings and γ-radiation on reduction of food pathogens such as Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium was evaluated in broccoli florets. Broccoli florets were inoculated with pathogenic bacteria at 106 CFU/g. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids (OAs) plus lactic acid bacteria metabolites (LABs), OA plus citrus extract (CE), OA plus CE plus spice mixture (SM), and OA plus rosemary extract (RE). Coated florets were irradiated with various doses (0–3.3 kGy), and microbial analyses were used to calculate the D10 value and radiosensitive relative. The coating containing OA plus CE was the most effective formulation for increasing the sensitization of Escherichia coli by 2.4 times as compared to the control without the antimicrobial coating. For Salmonella Typhimurium, coating containing OA plus LAB was the most effective formulation, increasing radiosensitivity by 2.4 times as well. All antimicrobial coatings had almost the same effect of increasing the sensitivity of Listeria monocytogenes (from 1.31 to 1.45 times) to γ-irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号