首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report a new critical solution found at the threshold of axisymmetric gravitational collapse of a complex scalar field with angular momentum. To carry angular momentum the scalar field cannot be axisymmetric; however, its azimuthal dependence is defined so that the resulting stress-energy tensor and spacetime metric are axisymmetric. The critical solution found is nonspherical, discretely self-similar with an echoing exponent Delta=0.42(+/-4%), and exhibits a scaling exponent gamma=0.11(+/-10%) in near-critical collapse. Our simulations suggest that the solution is universal (within the imposed symmetry class), modulo a family-dependent constant, complex phase.  相似文献   

2.
We show that the (4 + 1)-dimensional vacuum Einstein equations admit gravitational waves with radial symmetry. The dynamical degrees of freedom correspond to deformations of the three-sphere orthogonal to the (t,r) plane. Gravitational collapse of such waves is studied numerically and shown to exhibit discretely self-similar type II critical behavior at the threshold of black hole formation.  相似文献   

3.
This paper considers the dynamics of a classical problem in astrophysics, the behavior of spherically symmetric gravitational collapse starting from a uniform, density cloud of interstellar gas. Previous work on this problem proposed a universal self-similar solution for the collapse yielding a collapsed mass much smaller than the mass contained in the initial cloud. This paper demonstrates the existence of a second threshold—not far above the marginal collapse threshold—above which the asymptotic collapse is not universal. In this regime, small changes in the initial data or weak stochastic forcing leads to qualitatively different collapse dynamics. In the absence of instabilities, a progressing wave solution yields a collapsed uniform core with infinite density. Under some conditions the instabilities ultimately lead to the well-known self-similar dynamics. However, other instabilities can cause the density profile to become non-monotone and produce a shock in the velocity. In presenting these results, we outline pitfalls of numerical schemes that can arise when computing collapse.  相似文献   

4.
We consider the critical behavior at the threshold of black-hole formation for the five-dimensional vacuum Einstein equations satisfying the cohomogeneity-two triaxial Bianchi type-IX ansatz. Exploiting a discrete symmetry present in this model we predict the existence of a codimension-two attractor. This prediction is confirmed numerically and the codimension-two attractor is identified as a discretely self-similar solution with two unstable modes.  相似文献   

5.
Structure formation, break-down, orientation, and recovery in a multiwalled carbon nanotube (MWCNT)-polyethylene oxide nanocomposite above the percolation threshold were investigated using oscillatory and rotational rheometric studies. It was found that above the percolation threshold a percolating cluster is formed in the mixture, which is broken down upon application of a shearing force greater than a critical value. The critical value depends on both temperature and concentration of MWCNT particles in the polymer matrix. No full recovery of the structure was observed, even after 3600 s of rest time. This was attributed to a very high tendency of the MWCNT particles to reaggregate and the high strength of the primary percolating cluster formed during the recovery process. A generalized mechanism was proposed for the breakdown and recovery of the clusters of the MWCNT particles which can explain the observations for different kinds of matrices and dispersed particles.  相似文献   

6.
Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.  相似文献   

7.
Sudden collapse of a granular cluster   总被引:1,自引:0,他引:1  
Single clusters in a vibro-fluidized granular gas in N connected compartments become unstable at strong shaking. They are experimentally shown to collapse very abruptly. The observed cluster lifetime (as a function of the driving intensity) is analytically calculated within a flux model, making use of the self-similarity of the process. After collapse, the cluster diffuses out into the uniform distribution in a self-similar way, with an anomalous diffusion exponent 1/3.  相似文献   

8.
We prove existence of a countable family of spherically symmetric self-similar wave maps from 3+1 Minkowski spacetime into the 3-sphere. These maps can be viewed as excitations of the ground state solution found previously by Shatah. The first excitation is particularly interesting in the context of the Cauchy problem since it plays the role of a critical solution sitting at the threshold for singularity formation. We analyze the linear stability of our wave maps and show that the number of unstable modes about a given map is equal to its nodal number. Finally, we formulate a condition under which these results can be generalized to higher dimensions. Received: 20 October 1999 / Accepted: 12 May 2000  相似文献   

9.
In the context of the recently developed "equation-free" approach to computer-assisted analysis of complex systems, we extract the self-similar solution describing core collapse of a stellar system from numerical experiments. The technique allows us to sidestep the core "bounce" that occurs in direct N-body simulations due to the small-N correlations that develop in the late stages of collapse, and hence to follow the evolution well into the self-similar regime.  相似文献   

10.
11.
A theory is presented of how orienting fields and steric interactions conspire against the formation of a percolating network of, in some sense, connected elongated colloidal particles in fluid dispersions. We find that the network that forms above a critical loading breaks up again at higher loadings due to interaction-induced enhancement of the particle alignment. Upon approach of the percolation threshold, the cluster dimensions diverge with the same critical exponent parallel and perpendicular to the field direction, implying that connectedness percolation is not in the universality class of directed percolation.  相似文献   

12.
Z. Mimouni 《Physica A》2009,388(7):1067-1073
We analyse a model for the aggregation of polystyrene particles which arises in an electrorheology system in which linear clusters grow upon the application of an alternating electromagnetic field. We consider a coagulation kernel involving negative powers of cluster sizes and investigate the reduction of the governing equations to a similarity solution in the large-time limit. Comparison between the experimental results and the theory presented here shows a good collapse of the data onto a single curve, which matches the theoretical results particularly well at the larger cluster sizes.  相似文献   

13.
The kink stability of self-similar solutions of a massless scalar field with circular symmetry in 2 + 1 gravity is studied, and found that such solutions are unstable against the kink perturbations along the sonic line (self-similar horizon). However, when perturbations outside the sonic line are considered, and taking the ones along the sonic line as their boundary conditions, we find that non-trivial perturbations do not exist. In other words, the consideration of perturbations in the whole spacetime limits the unstable mode of the perturbations found along the sonic line, and the kink instability rises because of the incomplete treatment of the problem. As a result, the critical solution for the scalar collapse remains critical even after the kink perturbations are taken into account.  相似文献   

14.
We study the structure and the dynamics in the formation of irreversible gels by means of molecular dynamics simulation of a model system where the gelation transition is due to the random percolation of permanent bonds between neighboring particles. We analyze the heterogeneities of the dynamics in terms of the fluctuations of the self-intermediate scattering functions: in the sol phase close to the percolation threshold, we find that this dynamic susceptibility increases with the time until it reaches a plateau. At the gelation threshold this plateau scales as a function of the wave vector k as k(eta-2), with eta being related to the decay of the percolation pair connectedness function. At the lowest wave vector, approaching the gelation threshold it diverges with the same exponent gamma as the mean cluster size. These findings suggest an alternative way of measuring critical exponents in a system undergoing chemical gelation.  相似文献   

15.
The classical Lifshitz–Slyozov–Wagner theory of domain coarsening predicts asymptotically self-similar behavior for the size distribution of a dilute system of particles that evolve by diffusional mass transfer with a common mean field. Here we consider the long-time behavior of measure-valued solutions for systems in which particle size is uniformly bounded, i.e., for initial measures of compact support. We prove that the long-time behavior of the size distribution depends sensitively on the initial distribution of the largest particles in the system. Convergence to the classically predicted smooth similarity solution is impossible if the initial distribution function is comparable to any finite power of distance to the end of the support. We give a necessary criterion for convergence to other self-similar solutions, and conditional stability theorems for some such solutions. For a dense set of initial data, convergence to any self-similar solution is impossible.  相似文献   

16.
We study the evolution of radiating and viscous fluid spheres assuming an additional homothetic symmetry on the spherically symmetric space-time. We match a very simple solution to the symmetry equations with the exterior one (Vaidya). We then obtain a system of two ordinary differential equations which rule the dynamics, and find a self-similar collapse which is shear-free and with a barotropic equation of state. Considering a huge set of initial self-similar dynamics states, we work out a model with an acceptable physical behavior.  相似文献   

17.
Modeling of the precise fabrication in the self-assembling of particles is studied using the nonlinear Langevin equation system. The numerical simulation showed a marked ordering of the particles as a function of time after some induction period. The abnormally enlarged fluctuation was found around the start of the evident ordering. After the fluctuation, a sudden increase of the cluster size was observed. The results corresponded well to the dynamics due to the formation of the critical cluster. The shape of the critical cluster around the enlarged fluctuation was not compact and showed fractal-like structures. The fluctuation of the cluster size around the formation of the critical cluster was explained by the anomalous fluctuation theorem for the generalized Langevin equation. The characterization of the stochastic dynamics of the critical clusters rationalized the concept of dynamic templating for the fabrication technique of the self-assembling of nanoparticles, that is, the structural constraint on the particle assembly by externally adding the resonance frequencies that match with the localized nonlinear vibrational modes of the target structures originating from thermal (Brownian) activation.  相似文献   

18.
We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. Our formula generalizes the usual Einstein relation for a free Brownian motion to the context of two-dimensional gravity. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc, the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature Tc is different from the collapse temperature T* at which the partition function diverges. These quantities differ by a factor 1-1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms” in a two-dimensional (2D) plasma and the formation of dipoles or “supervortices” in 2D point vortex dynamics.  相似文献   

19.
Isothermal condensation of supersaturated vapors of various substances and formation of lampblack particles by isothermal decomposition of hydrocarbon (acetylene) molecules is investigated by analytic methods. Expressions that differ generally from the classical ones are obtained, on the basis of the quasichemical model of cluster particles, for the quasi-equilibrium and stationary distribution functions of the cluster sizes, as well as for the rates of formation of clusters having critical dimensions. Analytic expressions describing the time evolution of the degree of supersaturation and of the size distribution function of condensed cluster particles are obtained for the case when the system goes over from the supersaturated state to thermodynamic equilibrium. Equations for the principal characteristics of lampblack formation, viz., the characteristic time and the average size and density of the lampblack particles, are obtained with allowance for the properties of the formation and dissociation (evaporation) of small lampblack cluster particles.Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. N. Lebedeva AN SSSR, Vol. 145, pp. 189–219, 1984.  相似文献   

20.
We examine here spherical gravitational collapse of a matter model with vanishing radial pressure and non-zero tangential pressure. It is seen analytically that the collapsing cloud either forms a black hole or disperses depending on values of the initial parameters which are initial density, tangential pressure and velocity profile of the cloud. A threshold of black hole formation is observed near which a scaling relation is obtained for the mass of black hole, assuming initial profiles to be smooth. The similarities in the behaviour of this model at the onset of black hole formation with that of numerical critical behaviour in other collapse models are indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号