首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings.  相似文献   

2.
We report a portable lensless on-chip microscope that can achieve <1 μm resolution over a wide field-of-view of ~ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ~ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.  相似文献   

3.
Greenbaum A  Sikora U  Ozcan A 《Lab on a chip》2012,12(7):1242-1245
We report a field-portable lensfree microscope that can image dense and connected specimens with sub-micron resolution over a large field-of-view of ~30 mm(2) (i.e., ~6.4 mm × ~4.6 mm) using pixel super-resolution and iterative phase recovery techniques. Weighing ~122 grams with dimensions of 4 cm × 4 cm × 15 cm, this microscope records lensfree in-line holograms of specimens onto an opto-electronic sensor-array using partially coherent illumination. To reconstruct the phase and amplitude images of dense samples (with >0.3 billion pixels in each image, i.e., >0.6 billion pixels total), we employ a multi-height imaging approach, where by using a mechanical interface the sensor-to-sample distance is dynamically changed by random discrete steps of e.g., ~10 to 80 μm. By digitally propagating back and forth between these multi-height super-resolved holograms (corresponding to typically 2-5 planes), phase and amplitude images of dense samples can be recovered without the need for any spatial masks or filtering. We demonstrate the performance of this field-portable multi-height lensfree microscope by imaging Papanicolaou smears (also known as Pap tests). Our results reveal the promising potential of this multi-height lensfree computational microscopy platform for e.g., pathology needs in resource limited settings.  相似文献   

4.
Zhu H  Yaglidere O  Su TW  Tseng D  Ozcan A 《Lab on a chip》2011,11(2):315-322
We demonstrate wide-field fluorescent and darkfield imaging on a cell-phone with compact, light-weight and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. For this purpose, we used battery powered light-emitting diodes (LEDs) to pump the sample of interest from the side using butt-coupling, where the pump light was guided within the sample cuvette to uniformly excite the specimen. The fluorescent emission from the sample was then imaged using an additional lens that was positioned right in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to our detection path, an inexpensive plastic colour filter was sufficient to create the dark-field background required for fluorescent imaging, without the need for a thin-film interference filter. We validate the performance of this platform by imaging various fluorescent micro-objects in 2 colours (i.e., red and green) over a large field-of-view (FOV) of ~81 mm(2) with a raw spatial resolution of ~20 μm. With additional digital processing of the captured cell-phone images, through the use of compressive sampling theory, we demonstrate ~2 fold improvement in our resolving power, achieving ~10 μm resolution without a trade-off in our FOV. Further, we also demonstrate darkfield imaging of non-fluorescent specimen using the same interface, where this time the scattered light from the objects is detected without the use of any filters. The capability of imaging a wide FOV would be exceedingly important to probe large sample volumes (e.g., >0.1 mL) of e.g., blood, urine, sputum or water, and for this end we also demonstrate fluorescent imaging of labeled white-blood cells from whole blood samples, as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts. Weighing only ~28 g (~1 ounce), this compact and cost-effective fluorescent imaging platform attached to a cell-phone could be quite useful especially for resource-limited settings, and might provide an important tool for wide-field imaging and quantification of various lab-on-a-chip assays developed for global health applications, such as monitoring of HIV+ patients for CD4 counts or viral load measurements.  相似文献   

5.
Pang S  Han C  Lee LM  Yang C 《Lab on a chip》2011,11(21):3698-3702
We report the implementation of an on-chip microscope system, termed fluorescence optofluidic microscope (FOFM), which is capable of fluorescence microscopy imaging of samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, the fluorescence emissions are collected by a filter-coated CMOS sensor, which serves as the channel's floor. The collected data can then be processed to render fluorescence microscopy images at a resolution determined by the focused light spot size (experimentally measured as 0.65 μm FWHM). In our experiments, our established resolution was 1.0 μm due to Nyquist criterion consideration. As a demonstration, we show that such a system can be used to image the cell nuclei stained by Acridine Orange and cytoplasm labeled by Qtracker(?).  相似文献   

6.
We present a lab on a chip (LOC) compatible modular platform for magnetic resonance (MR)-based investigation of sub-millimetre samples. The platform combines the advantages offered respectively by microcoils (high resolution at the microscale) and macroscopic surface coils (large field of view) as MR-detectors and consists of a phased array of microcoils (PAMs) providing a flat MR-sensitive area of 18.3 mm(2) with a B(0)-field uniformity better than 0.25 ppm in the sensor centre area. We demonstrate both high-resolution magnetic resonance imaging (MRI) and NMR spectroscopy using this platform. To demonstrate the application for biological samples, we report MR imaging of fish oocytes with an in-plane resolution of 30 × 30 μm(2) and a contrast to noise ratio of 10 for a scan time of only 13 min 39 s. We have also demonstrated high-resolution spectroscopy of a water phantom achieving 11 ppb (4.5 Hz at 400 MHz) linewidth and an SNR of 28 for only 12 s scan time. State of the art automatic wire bonding technology in conjunction with MEMS techniques has been employed to manufacture the platform with potential applications in MR-investigation of planar samples.  相似文献   

7.
现有的光学超分辨显微成像技术主要依赖于特殊的荧光标记物,其对于大多数非荧光样品的超分辨成像就变得无能为力。因此我们提出将光学相减显微技术应用到非荧光样品的成像当中,利用普通共聚焦光斑和面包圈型光斑分别激发样品的散射光成像,从而得到样品同一区域的两幅图像,再通过图像相减的方法提高了图像空间分辨率。不同于一般的超分辨成像方法,这种光学相减显微镜不需要特殊的样品预处理过程,同时两次成像的激发光强度可以保持在一个较低水平,避免了样品损伤的影响。随后金纳米小球和有机聚合物微丝的散射成像实验证明了光学相减显微镜可以将空间分辨率提高到215 nm (0.33λ, 1λ = 650 nm),并且通过探测散射信号得到更多的样品细节信息。  相似文献   

8.
Large area compositional mapping (>6 mm2) using a fast and automated system based on laser-induced plasma spectrometry is presented. The second harmonic of a flat top Nd:YAG laser beam was used to generate a microline plasma on the sample surface. The emitted light from the microline plasma was imaged onto the entrance slit of an imaging spectrograph and was detected by an intensified charge-coupled device to generate a spatially and spectrally resolved data set. Individual LIPS images, each measuring roughly 2500×2500 μm with spatial resolution of 50 μm between adjacent craters and 4.8 μm along the microline are presented. These large area maps were acquired in less than 1 min. Steel samples containing MnS and TiN inclusions were chosen as the most adequate for this study. The results are presented for the characterization of inclusionary material in stainless steel products in terms of morphology, distribution and abundance.  相似文献   

9.
Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm(2)) were fabricated in batches on a wafer using a commercially available polymer (TOPAS(?) Cyclic Olefin Copolymer). Thermal imprinting of micro- and nanoscale structures into 100 μm foils simultaneously defines photonic resonators, liquid-core waveguides, and fluidic reservoirs. Subsequently, the fluidic structures are sealed with another 220 μm foil by thermal bonding. Tunability of laser output wavelengths over a spectral range of 24 nm on a single chip is accomplished by varying the laser grating period in steps of 2 nm. Low-cost manufacturing suitable for mass production, wide laser tunability, ultra-high output pulse energies, and long operation times without external fluidic pumping make these on-chip lasers suitable for a wide range of lab-on-a-chip applications, e.g. on-chip spectroscopy, biosensing, excitation of fluorescent markers, or surface enhanced Raman spectroscopy (SERS).  相似文献   

10.
Park MC  Hur JY  Cho HS  Park SH  Suh KY 《Lab on a chip》2011,11(1):79-86
Extracting single-cell information during cellular responses to external signals in a high-throughput manner is an essential step for quantitative single-cell analyses. Here, we have developed a simple yet robust microfluidic platform for measuring time-course single-cell response on a large scale. Our method combines a simple microwell-based cell docking process inside a patterned microfluidic channel, with programmable time-course live-cell imaging and software-aided fluorescent image processing. The budding yeast, Saccharomyces cerevisiae (S. cerevisiae), cells were individually captured in microwells by multiple sweeping processes, in which a cell-containing solution plug was actively migrating back and forth several times by a finger-pressure induced receding meniscus. To optimize cell docking efficiency while minimizing unnecessary flooding in subsequent steps, circular microwells of various channel dimensions (4-24 μm diameter, 8 μm depth) along with different densities of cell solution (1.5-6.0 × 10(9) cells per mL) were tested. It was found that the microwells of 8 μm diameter and 8 μm depth allowed for an optimal docking efficiency (>90%) without notable flooding issues. For quantitative single-cell analysis, time-course (time interval 15 minute, for 2 hours) fluorescent images of the cells stimulated by mating pheromone were captured using computerized fluorescence microscope and the captured images were processed using a commercially available image processing software. Here, real-time cellular responses of the mating MAPK pathway were monitored at various concentrations (1 nM-100 μM) of mating pheromone at single-cell resolution, revealing that individual cells in the population showed non-uniform signaling response kinetics.  相似文献   

11.
Wang C  Jemere AB  Harrison DJ 《Electrophoresis》2010,31(22):3703-3710
We describe a microfluidic device in which integrated tryptic digestion, SPE, CE separation and electrospray ionization for MS are performed. The chip comprised of 10 × 30 μm channels for CE, and two serially connected 150?μm deep, 800?μm wide channels packed with 40 to 60 μm diameter beads, loaded with either immobilized trypsin, reversed-phase packing or both. On-chip digestion of cytochrome c using the trypsin bed showed complete consumption of the protein in 3 min, in contrast to the 2 h required for conventional solution phase tryptic digestion. SPE of 0.25 μg/mL solutions of the peptides leu-enkephalin, angiotensin II and LHRH gave concentration enhancements in the range of 4.4-12, for a ten times nominal volume ratio. A 100 nM cytochrome c sample concentrated 13.3 times on-chip gave a sequence coverage of 85.6%, with recovery values ranging from 41.2 to 106%. The same sample run without SPE showed only five fragment peaks and a sequence coverage of 41.3%. When both on-chip digestion and SPE (13.3 volume ratio concentration enhancement) were performed on 200 nM cytochrome c samples, a sequence coverage of 76.0% and recovery values of 21-105% were observed. Performing on-chip digestion alone on the same sample gave only one significant fragment peak. The above digestion/peptide concentration step was compared to on-chip protein concentration by SPE followed by on-chip digestion with solution phase trypsin. Both procedures gave similar recovery results; however, much larger trypsin autodigestion interference in the latter approach was apparent.  相似文献   

12.
We present the first direct comparison of scanning ion conductance microscopy (SICM) with atomic force microscopy (AFM) for cell imaging. By imaging the same fibroblast or myoblast cell with both technologies in series, we highlight their advantages and disadvantages with respect to cell imaging. The finite imaging force applied to the sample in AFM imaging results in a coupling of mechanical sample properties into the measured sample topography. For soft samples such as cells this leads to artifacts in the measured topography and to elastic deformation, which we demonstrate by imaging whole fixed cells and cell extensions at high resolution. SICM imaging, on the other hand, has a noncontact character and can provide the true topography of soft samples at a comparable resolution.  相似文献   

13.
A rapid, sensitive, and reliable ultra‐performance liquid chromatography (UPLC) coupled with photodiode array detection method was developed for the amino acid analysis of Amur sturgeon (Acipenser schrenckii Brandt). The method uses minimal sample volume and automated online precolumn derivitization of amino acids with fluorescent 6‐aminoquinolyl‐carbamyl reagent. The chromatographic separation was achieved by UPLC, which used a column with 1.7 μm particle packing that enabled higher speed of analysis, peak capacity, greater resolution, and increased sensitivity. Amino acid derivatives obtained under optimal conditions were separated on a Waters UPLC BEH C18 column with Acetonitrile–acetate buffer as mobile phase. Matrix effects were investigated and good linearities with correlation coefficients better than 0.9949 were obtained over a wide range of 5–1000 μmol/L for all amino acids. The simple sample preparation and minimal sample volume make the method useful for the quantitation of 17 amino acids in Amur sturgeon samples. It is concluded that a rapid and robust platform based on UPLC was established, and a total of 17 amino acids of Amur sturgeon were tentatively detected. This method showed good accuracy and repeatability that can be used for the quantification of amino acids in real samples.  相似文献   

14.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub-2 nm size and near-unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy-atom-rich organic fluorophores is mitigated through a silane-molecule-mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long-term photostability. Taking advantage of the low-power excitation (0.5 μW), prolonged singlet-state lifetime, and negligible depletion-induced re-excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm−2), and ultra-high lateral resolution (ca. λem/28).  相似文献   

15.
We present a new method to locally apply mechanical tensile and compressive force on single cells based on integration of a microfluidic device with an optical laser tweezers. This system can locate a single cell within customized wells exposing a square-like membrane segment to a functionalized bead. Beads are coated with extracellular matrix (ECM) proteins of interest (e.g. fibronectin) to activate specific membrane receptors (e.g. integrins). The functionalized beads are trapped and manipulated by optical tweezers to apply mechanical load on the ECM-integrin-cytoskeleton linkage. Activation of the receptor is visualized by accumulation of expressed fluorescent proteins. This platform facilitates isolation of single cells and excitation by tensile/compressive forces applied directly to the focal adhesion via specific membrane receptors. Protein assembly or recruitment in a focal adhesion can then be monitored and identified using fluorescent imaging. This platform is used to study the recruitment of vinculin upon the application of external tensile force to single endothelial cells. Vinculin appears to be recruited above the forced bead as an elliptical cloud, centered 2.1 ± 0.5 μm from the 2 μm bead center. The mechanical stiffness of the membrane patch inferred from this measurement is 42.9 ± 6.4 pN μm(-1) for a 5 μm × 5 μm membrane segment. This method provides a foundation for further studies of mechanotransduction and tensile stiffness of single cells.  相似文献   

16.
Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.  相似文献   

17.
This work demonstrates the detection of E. coli using a 2-dimensional photosensor array biochip which is efficiently equipped with a microfluidics sample/reagent delivery system for on-chip monitoring of bioassays. The biochip features a 4 x 4 array of independently operating photodiodes that are integrated along with amplifiers, discriminators and logic circuitry on a single platform. The microfluidics system includes a single 0.4 mL reaction chamber which houses a sampling platform that selectively captures detection probes from a sample through the use of immobilized bioreceptors. The independently operating photodiodes allow simultaneous monitoring of multiple samples. In this study the sampling platform is a cellulosic membrane that is exposed to E. coli organisms and subsequently analyzed using a sandwich immunoassay involving a Cy5-labeled antibody probe. The combined effectiveness of the integrated circuit (IC) biochip and the immunoassay is evaluated for assays performed both by conventional laboratory means followed by detection with the IC biochip, and through the use of the microfluidics system for on-chip detection. Highlights of the studies show that the biochip has a linear dynamic range of three orders of magnitude observed for conventional assays, and can detect 20 E. coli organisms. Selective detection of E. coli in a complex medium, milk diluent, is also reported for both off-chip and on-chip assays.  相似文献   

18.
Shen J  Zhou Y  Lu T  Peng J  Lin Z  Huang L  Pang Y  Yu L  Huang Y 《Lab on a chip》2012,12(2):317-324
Immunofluorescence (IF) is a common method to observe protein distribution and localization at the single-cell level through wide-field fluorescence or confocal microscopy. Conventional protocol for IF staining of cells typically requires a large amount of reagents, especially antibodies, and noticeable investment in both labor and time. Microfluidic technologies provide a cost-effective alternative: it can evaluate and optimize experimental conditions, and perform automatic and high-throughput IF staining on-chip. We employed this method to analyze lysosomal storage disorders (LSDs) based on the expression and morphological distribution of LAMP1 and LC3 in starving cells. With pneumatic valves integrated on-chip, the parallel staining process can be completed within a few hours. The total consumption of each antibody solution for the whole experiment is merely 0.3 μL. This device provides a promising tool for automated high-throughput molecular imaging at cell level that can be applied for diagnostic analysis.  相似文献   

19.
The flow behavior of a commercial polymeric monolith was investigated by direct numerical simulations employing the lattice-Boltzmann (LB) methodology. An explicit structural representation of the monolith was obtained by serial sectioning of a portion of the monolith and imaging by scanning electron microscopy. After image processing, the three-dimensional structure of a sample block with dimensions of 17.8 μm × 17.8 μm × 14.1 μm was obtained, with uniform 18.5 nm voxel size. Flow was simulated on this reconstructed block using the LB method to obtain the velocity distribution, and in turn macroscopic flow properties such as the permeability and the average velocity. The computed axial velocity distribution exhibits a sharp peak with an exponentially decaying tail. Analysis of the local components of the flow field suggests that flow is not evenly distributed throughout the sample geometry, as is also seen in geometries that exhibit preferential flow paths, such as sphere pack arrays with defects. A significant fraction of negative axial velocities are observed; the largest of these are due to flow along horizontal pores that are also slightly oriented in the negative axial direction. Possible implications for mass transfer are discussed.  相似文献   

20.
The potential of a microline‐imaging laser‐induced plasma spectrometry (LIPS) system for surface and depth analysis of heterogeneous solid samples in air at atmospheric pressure has been demonstrated. A pulsed Nd : YAG laser beam operating at 532 nm, with a homogeneous energy distribution (flat top laser), was used to generate a microline plasma on the sample surface. Subsequent light from the microline plasma was resolved spectrally and spatially and detected with an imaging spectrograph and an intensified charged‐coupled device detector. A patterned metal sample was chosen as the most appropriate for this study. Three‐dimensional chemical maps of Ni and Cu from the edge connectors of a printed circuit board have been obtained. With this experimental configuration, the lateral resolution (limited by crater width) was 42 µm and the spatial resolution along the spectrometer slit was 17.4 µm. The results illustrate the capability of microline imaging for fast mapping of large‐area samples and for depth profiling purposes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号