首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-linear equations of motion for a transversely isotropic moderately thick plate in a general state of non-uniform initial stress where the effects of transverse shear and rotary inertia are included are derived. The large amplitude flexural vibration of a simply supported rectangular moderately thick plate subjected to initial stress is investigated. The initial stress is taken to be a combination of a pure bending stress plus an extensional stress in the plane of the plate. These equations are used to solve the vibrations problem by the Galerkin method. The effects of various parameters on the non-linear vibration frequencies are studied.  相似文献   

2.
The nonlinear forced vibration behavior of a cantilevered nanobeam is investigated in this paper, essentially considering the effect due to the surface elastic layer. The governing equation of motion for the nano-cantilever is derived, with consideration of the geometrical nonlinearity and the effects of additional flexural rigidity and residual stress of the surface layer. Then, the nonlinear partial differential equation (PDE) is discretized into a set of nonlinear ordinary differential equations (ODEs) by means of the Galerkin’s technique. It is observed that surface effects on the natural frequency of the nanobeam is of significance, especially for the case when the aspect ratio of the nanobeam is large. The nonlinear resonant dynamics of the nanobeam system is evaluated by varying the excitation frequency around the fundamental resonance, showing that the nanobeam would display hardening-type behavior and hence the frequency-response curves bend to the right in the presence of positive residual surface stress. However, with the negative residual surface stress, this hardening-type behavior can be shifted to a softening-type one which becomes even more evident with increase of the aspect ratio parameter. It is also demonstrated that the combined effects of the residual stress and aspect ratio on the maximum amplitude of the nanobeam may be pronounced.  相似文献   

3.
A theoretical framework is presented for predicting the nonlinear damping and damped vibration of laminated composite strips due to large in-plane forces. Nonlinear Green-Lagrange axial strains are introduced in the governing equations of a viscoelastic composite and new nonlinear damping and stiffness matrices are formulated including initial stress effects. Building upon the nonlinear laminate mechanics, a damped beam finite element is developed. Finite element stiffness and damping matrices are synthesized and the static equilibrium is predicted using a Newton-Raphson solver. The corresponding linearized damped free-vibration response is predicted and modal frequencies and damping of the in-plane deflected strip are calculated. Numerical results quantify the nonlinear effect of in-plane loads on structural modal damping of various laminated composite strips. The modal loss-factors and natural frequencies of cross-ply Glass/Epoxy beams subject to in-plane loading are measured and correlated with numerical results.  相似文献   

4.
The nonlinear free vibration of carbon nanotubes/fiber/polymer composite (CNTFPC) multi-scale plates with surface-bonded piezoelectric actuators is studied in this paper. The governing equations of the piezoelectric nanotubes/fiber/polymer multiscale laminated composite plates are derived based on first-order shear deformation plate theory (FSDT) and von Kármán geometrical nonlinearity. Halpin–Tsai equations and fiber micromechanics are used in hierarchy to predict the bulk material properties of the multiscale composite. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. A perturbation scheme of multiple time scales is employed to determine the nonlinear vibration response and the nonlinear natural frequencies of the plates with immovable simply supported boundary conditions. The effects of the applied constant voltage, plate geometry, volume fraction of fibers and weight percentage of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the linear and nonlinear natural frequencies of the piezoelectric nanotubes/fiber/polymer multiscale composite plate are investigated through a detailed parametric study.  相似文献   

5.
This paper presents a nonlinear free vibration analysis of the microbeams based on the modified couple stress Euler–Bernoulli beam theory and von Kármán geometrically nonlinear theory. The governing differential equations are established in variational form from Hamilton principle, with a material length scale parameter to interpret the size effect. These partial differential equations are reduced to corresponding ordinary ones by eliminating the time variable with the Kantorovich method following an assumed harmonic time mode. The resulting equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the size-dependent characteristic relations of nonlinear vibration frequency vs. central amplitude of the microbeams are obtained successfully. The comparisons with available published results show that the current approach and algorithm are of good practicability. A parametric study is conducted involving the dependency of the frequency on the length scale parameter along with Poisson ratio, which shows that the nonlinear vibration frequency predicted by the current model is higher than that by the classical one.  相似文献   

6.
In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.  相似文献   

7.
A computational analysis of the non-linear vibration and thermal post-buckling of a heated orthotropic annular plate with a central rigid mass is examined for the cases of immovably hinged as well as clamped constraint conditions of the outer edge. First, based on von Karman's plate theory and Hamilton's principles, the governing equations, in terms of the displacements of the middle plane, of the problem are derived. Then, upon assuming that harmonic responses of the system exist, the non-linear partial differential equations are converted into the corresponding non-linear ordinary differential equations through elimination of the time variable by using the Kantorovich time-averaging method. Finally, by applying a shooting method, the fundamental responses of the non-linear vibration and thermal post-buckling of the plate are numerically obtained. For some prescribed values of the parameters, such as the material rigidity ratio, temperature rise and so on, the curves of the fundamental frequency versus specified amplitude and the thermal post-buckled equilibrium paths of the plate are numerically presented.  相似文献   

8.
In this paper, the nonlinear dynamical behaviors of deploying-and-retreating wings in supersonic airflow are investigated. A cantilever laminated composite beam, which is axially moving at a known rate, is implemented to model the deploying-and-retreating wing. Associated with Reddy's third-order theory and von Karman type equations of large deformation, the nonlinear governing equations of motion of the deploying-and-retreating wing are derived based on the Hamilton's principle. The nonlinear partial differential equations of motion are transformed into a set of the ordinary differential equations using Galerkin's method. The nonlinear dynamical behaviors of the deployable-and-retreating wing are investigated in the cases of three different axially moving rates during deploying process and retreating process using the numerical simulations.  相似文献   

9.
An analysis of the free flexural vibrations of elastic circular plates with initial imperfections is presented. The analysis includes the effects of transverse shear and rotatory inertia. The vibration amplitudes are assumed to be large, and two non-linear differential equations are obtained for free vibration of the plate and solved numerically. The period of the plate has been calculated as a function of the initial amplitude for four typical supporting conditions.  相似文献   

10.
Non-linear free vibrations of a simply supported rectangular elastic plate are examined, by using stress equations of free flexural motions of plates with moderately large amplitudes derived by Herrmann. A modal expansion is used for the normal displacement that satisfies the boundary conditions exactly, but the in-plane displacements are satisfied approximately by an averaging technique. Galerkin technique is used to reduce the problem to a system of coupled non-linear ordinary differential equations for the modal amplitudes. These nonlinear differential equations are solved for arbitrary initial conditions by using the multiple-time-scaling technique. Explicit values of the coefficients that appear in the forementioned Galerkin system of equations are given, in terms of non-dimensional parameters characterizing the plate geometry and material properties, for a four-mode case, for which results for specific initial conditions are presented. A comparison of the results with those obtained in previous studies of the problem is presented. In addition, effects of prescribed edge loadings are examined for the four-mode case.  相似文献   

11.
In this paper, the static analysis of functionally graded (FG) circular plates resting on linear elastic foundation with various edge conditions is carried out by using a semi-analytical approach. The governing differential equations are derived based on the three dimensional theory of elasticity and assuming that the mechanical properties of the material vary exponentially along the thickness direction and Poisson's ratio remains constant. The solution is obtained by employing the state space method (SSM) to express exactly the plate behavior along the graded direction and the one dimensional differential quadrature method (DQM) to approximate the radial variations of the parameters. The effects of different parameters (e.g., material property gradient index, elastic foundation coefficients, the surfaces conditions (hard or soft surface of the plate on foundation), plate geometric parameters and edges condition) on the deformation and stress distributions of the FG circular plates are investigated.  相似文献   

12.
Thermal postbuckling and vibration behaviors of the functionally graded (FG) plate are investigated. The material properties of the FG plate are assumed to vary continuously through the thickness of the plate and as temperature with the nonlinearity. The nonlinear finite element equations based on the first-order shear deformation plate theory are formulated for the FG plate. The von Karman nonlinear strain–displacement relationship is used to account for the large deflection of the plate. The incremental form considering the initial displacement and initial stress is adopted for the nonlinear temperature-dependent material properties of the functionally graded material. The numerical result shows the characteristics of the thermal postbuckling and vibration of the FG plate in the pre- and post-buckled regions.  相似文献   

13.
In this paper, the non-linear free vibration of a string with large amplitude is considered. The initial tension, lateral vibration amplitude, cross-section diameter and the modulus of elasticity of the string have main effects on its natural frequencies. Increasing the lateral vibration amplitude makes the assumption of constant initial tension invalid. Therefore, it is impossible to use the classical equation of transverse motion assuming a small amplitude. On the other hand, by increasing the string cross-sectional diameter, the bending moment effect will increase dramatically, and it will act as an impressive restoring moment. Considering the effects of the bending moments, the non-linear equation governing the large amplitude transverse vibration of a string is derived. The time-dependent portion of the governing equation has the form of the Duffing equation. Due to the complexity and non-linearity of the derived equation and the fact that there is no established exact solution method, the equation is solved using the perturbation method. The results of the analysis are shown in appropriate graphs, and the natural frequencies of the string due to the non-linear factors are compared with the natural frequencies of the linear vibration of a string without bending moment effects.  相似文献   

14.
Based on Maxwell equations and corresponding electromagnetic constitutive relations, the electrodynamic equations and electromagnetic force expressions of a current-conducting thin plate in electromagnetic field are deduced. Nonlinear magneto-elastic vibration equations of the thin plate are given. In addition, nonlinear subharmonic resonances of the thin plate with two opposite sides simply supported which is under the mechanic live loads and in constant transverse magnetic field are studied. The corresponding vibration differential equation of Duffing type is deduced by the Galerkin method. The method of multiple scales is used to solve the equation, and the frequency-response equation of the system in steady motion under subharmonic responses is obtained, and the stability of solution is analyzed. According to the Liapunov stability theory, the critical conditions of stability are obtained. By the numerical calculation, the curves of resonance amplitude changing with the detuning parameter, the excitation amplitude and the magnetic intensity and corresponding state planes are obtained. The existing regions of nontrivial solutions and the changing law of stable and unstable solutions are analyzed. The time history response plots, the phase charts and the Poincare mapping charts are plotted. And the effect of the magnetic intensity on the system is discussed, and some complex dynamic performances as period-doubling motion and quasi-period motion are analyzed.  相似文献   

15.
In the present paper, the sinusoidal shear deformation plate theory (SDPT) is reformulated using the nonlocal differential constitutive relations of Eringen to analyze the bending and vibration of the nanoplates, such as single-layered graphene sheets, resting on two-parameter elastic foundations. The present SDPT is compared with other plate theories. The nanoplates are assumed to be subjected to mechanical and thermal loads. The equations of motion of the nonlocal model are derived including the plate foundation interaction and thermal effects. The governing equations are solved analytically for various boundary conditions. Nonlocal theory is employed to bring out the effect of the nonlocal parameter on the bending and natural frequencies of the nanoplates. The influences of nonlocal parameter, side-to-thickness ratio and elastic foundation moduli on the displacements and vibration frequencies are investigated.  相似文献   

16.
The dynamic governing equations and the corresponding boundary conditions for a rotating thin laminated circular plate with a viscoelastic core layer are derived in this paper based on the Hamilton principle. The analysis on dynamic features of the forward and Backward Traveling Waves for the rotating laminated plate is performed by means of Galerkin's method. The frequency-dependent complex modulus model for describing the constitutive behavior of the viscoelastic core layer is employed. The dynamic characteristics of frequencies and dampings of traveling waves for the rotating plate are obtained numerically. The effects of geometrical and material parameters on the critical speed of the rotating laminated plate with viscoelastic core are discussed in detail.  相似文献   

17.
A hitherto unavailable analytical solution to the boundary-value problem of the free vibration response of shear-flexible antisymmetric cross-ply laminated cylindrical panels is presented. The laminated shell theory formulation is based on the first order shear deformation theory (FSDT) including rotatory and surface-parallel inertias. The governing equations of the panel are defined by five highly coupled partial differential equations in five unknowns—three displacements, and two rotations. The assumed solution functions for the eigen/boundary-value problem are selected in terms of mixed-type double Fourier series. Numerical results presented for parametric effects, such as length-to-thickness ratio and radius-to-thickness ratio, should serve as a bench mark for future comparison. A four-node shear-flexible finite element is selected to compare the results with the present solution.  相似文献   

18.
Moving from a general plate theory, a modified general classical laminated plate theory (MGCLPT) exhibiting nonlinear curvatures but still allowing for some worth features of linear curvature models (von Karman) is formulated. Starting from MGCLPT partial differential equations, a minimal discretized model suitable for the analysis of resonant finite-amplitude vibrations of symmetric cross-ply laminates, with immovable or movable supports, is obtained via the Galerkin procedure. Periodic responses of a single-mode model and of a 3:1 internally resonant two-mode model excited at primary resonance are obtained via the multiple time scale method. The influence of various system parameters (thickness ratio, plate aspect, number of laminae, kind of material, mode number) is addressed, and the comparison of nonlinear vibration results as obtained with the MGCLPT and the von Karman models for different boundary conditions shows some interesting differences.  相似文献   

19.
Nonlinear vibration of micromachined asymmetric resonators   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamics of a beam-type resonant structure due to stretching of the beam is addressed. The resonant beam is excited by attached electrostatic comb-drive actuators. This structure is modeled as a thin beam-lumped mass system, in which an initial axial force is exerted to the beam. This axial force may have different origins, e.g., residual stress due to micro-machining. The governing equations of motion are derived using the mode summation method, generalized orthogonality condition, and multiple scales method for both free and forced vibrations. The effects of the initial axial force, modal damping of the beam, the location, mass, and rotary inertia of the lumped mass on the free and forced vibration of the resonator are investigated. For the case of the forced vibration, the primary resonance of the first mode is investigated. It has been shown that there are certain combinations of the model parameters depicting a remarkable dynamic behavior, in which the second to first resonance frequencies ratio is close to three. These particular cases result in the internal resonance between the first and second modes. This phenomenon is investigated in detail.  相似文献   

20.
This paper deals with the free vibration behavior of laminated transversely isotropic circular plates with axisymmetric rigid core attached at the center. The governing equations of motion are obtained based on Mindlin's first-order shear deformation plate theory. Two possible categories of vibration modes related to up-down translation of the core and wobbly rotation of the core about a diameter are studied. Accurate natural frequencies hitherto not reported in the literature are presented for a wide range of thickness-to-radius ratio, inner-to-outer radius ratio, mass and moment of inertia ratios of the core and various boundary conditions at the outer edge of the plate. Numerical results are compared with those of a three-dimensional finite element method (3-D FEM) to demonstrate the high accuracy and reliability of the current analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号