首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The increasing presence of low frequency sources and the lack of acoustic standard measurement procedures make the extension of reverberation time measurements to frequencies below 100 Hz necessary. In typical ordinary rooms with volumes between 30 m3 and 200 m3 the sound field is non-diffuse at such low frequencies, entailing inhomogeneities in space and frequency domains. Presence of standing waves is also the main cause of bad quality of listening in terms of clarity and rumble effects. Since standard measurements according to ISO 3382 fail to achieve accurate and precise values in third octave bands due to non-linear decays caused by room modes, a new approach based on reverberation time measurements of single resonant frequencies (the modal reverberation time) has been introduced. From background theory, due to the intrinsic relation between modal decays and half bandwidth of resonant frequencies, two measurement methods have been proposed together with proper measurement procedures: a direct method based on interrupted source signal method, and an indirect method based on half bandwidth measurements. With microphones placed at corners of rectangular rooms in order to detect all modes and maximize SNRs, different source signals were tested. Anti-resonant sine waves and sweep signal turned out to be the most suitable for direct and indirect measurement methods respectively. From spatial measurements in an empty rectangular test room, comparison between direct and indirect methods showed good and significant agreements. This is the first experimental validation of the relation between resonant half bandwidth and modal reverberation time. Furthermore, comparisons between means and standard deviations of modal reverberation times and standard reverberation times in third octave bands confirm the inadequacy of standard procedure to get accurate and precise values at low frequencies with respect to the modal approach. Modal reverberation time measurements applied to furnished ordinary rooms confirm previous results in the limit of modal sound field: for highly damped modes due to furniture or acoustic treatment, the indirect method is not applicable due to strong suppression of modes and the consequent deviation of the acoustic field from a non-diffuse condition to a damped modal condition, while standard reverberation times align with direct method values. In the future, further investigations will be necessary in different rooms to improve uncertainty evaluation.  相似文献   

2.
Availability of low-frequency characteristics of sound insulating elements is required in order to achieve efficient control of noise sources and reduced level of annoyance in the low-frequency range. Previous work by the author has addressed the problem of designing an enhanced calculation environment for the estimation of sound Transmission Loss (TL). In this work, numerical prediction of TL of sound insulating structures is performed using a procedure, which is in compliance with the ISO recommendations for acoustic measurements. The room-structure-room finite element representation, employed to solve sound propagation and sound-structure interaction problems, as well as the dynamic coupling of and the sound energy propagation through successive air-structure layers are investigated. Several cases of single-layered plain structures of common sound insulating materials such as steel, glass and aluminium with various thickness values are modelled and the calculated TL is compared with published experimental results. It is shown that although the detailed dynamic response of the structures is not accurately predicted due to uncertain parameters, such as the test-specimens dimension and vaguely known boundary conditions, the octave band averaged TL is sufficiently predicted for the majority of the tested materials. Extension of the method to multi-layered structures is attempted and discrepancies at low frequencies are depicted. Finally, the effect of poor mode distribution of the measurement rooms upon the estimated TL is examined in focus. Comparison is performed between TL values calculated with typical and intensely modified transmission rooms. The low-frequency improvement on measurements, when the second ones are used, is demonstrated.  相似文献   

3.
C. Hopkins  P. Turner 《Applied Acoustics》2005,66(12):1339-1382
Procedures for the field measurement of airborne sound insulation between rooms with diffuse fields are described in International Standard ISO 140-4. However, many dwellings contain rooms with volumes less than 50 m3, where low frequency measurements are less reliable; hence there is a need for a measurement procedure to improve the reliability of field measurements in rooms with non-diffuse fields. Procedures are proposed for sound pressure level and reverberation time measurements for the 50, 63 and 80 Hz third octave bands. The sound pressure level measurement combines corner microphone positions with positions in the central region of each room. This provides a good estimate of the room average sound pressure level with significantly improved repeatability.  相似文献   

4.
针对隔声门低频隔声性能差的问题,将嵌入式质量应用于隔声门中以提高隔声门在低频段的隔声性能,通过建立两个相邻混响室的有限元模型计算隔声门的隔声量。基于该模型,并结合隔声门低频隔声性能的评价方法,对在低频段影响隔声门有效隔声量的相关参数进行了参数关联性研究和优化,优化结果表明:对于92 mm厚,容重24 kg/m3的玻璃棉,使用灰铸铁作为质量块,并合理布置各个质量块的大小及其在玻璃棉中的相对位置可以有效提高隔声门在低频段的隔声性能;与普通隔声门相比,在低频段嵌入式质量隔声门的有效隔声量增加了5.0 dB。  相似文献   

5.
This paper presents an experimental investigation of passively control of sound transmission through a double glazed window by using arrangement of Helmholtz resonators (HRs), which are commonly used for narrow band control application. The laboratory experiments were performed placing the window between reverberation chamber and anechoic chamber. The window was subject to diffuse field, approximate normal wave and oblique wave acoustic excitations. Three sets of HRs were designed and installed in cavity of window. The sound control performances at far-field were measured. The control performances from varying the number of HRs, incident acoustic field, excitation sources (band-limited white noise and traffic noise examples) are presented and discussed in detail. It is shown that a considerable reduction of the transmitted sound pressure levels has been achieved around the mass–air–mass resonance frequency (50–120 Hz). The obtained reductions in the transmitted sound pressure illustrate the potentials of HRs for improving the sound insulation characteristics of double glazed window. The experimental results also indicate that only tuning the HRs to the mass–air–mass resonance frequency does not guarantee the best possible insulation of the sound transmission.  相似文献   

6.
Two numerical procedures for finding the acoustic eigenvalues in the rectangular room with arbitrary (uniform) wall impedances are developed. One numerical procedure applies Newton's method. Here, starting with soft walls, the eigenvalues are found by increasing the impedances of each wall pair in small increments up to the terminal impedances. Another procedure poses the eigenvalue problem as one of homotopic continuation from a non-physical reference configuration in which all eigenvalues are known and obvious. The continuation is performed by the numerical integration of two differential equations. The latter procedure was found to be faster and finds all possible solutions. The set of eigenvalues allowed the room modal natural frequencies and damping constants to be obtained. From sound decays measured in a hard-walled rectangular room, and from the collective-modal-decay curve, the impedances of the hard walls are estimated. These are then used to find the reverberation times of the modes in the room with the floor lined with sound absorbing material of known acoustic impedance. It was found that a single reverberation time, for all modes, is only supported in the rectangular room with hard walls and at the higher frequency bands, consistent with Sabine's theory, which assumes a diffuse sound field. In the rectangular room with hard walls and at the lower frequency bands, and in the rectangular room with the floor lined with sound absorbing material and for all frequency bands, modes with rather distinctive reverberation times may produce sound decays not always consistent with Sabine's prediction.  相似文献   

7.
The goal is to interpret and calculate the "niche effect" for the airborne sound transmission through a specimen mounted inside an aperture in the wall between the source and receiving reverberation rooms. The low-frequency sound insulation is known to be worse for the specimen placed at the center than for the specimen mounted at either edge of the aperture. As shown, the aperture with a tested specimen can be simulated at low frequencies as a triple partition where the middle element is the specimen and the role of the edge leaves is played by the air masses entrained at the aperture edges. With a centrally located specimen, such a triple system is symmetric and has two main natural frequencies close together. In this case, the resonant transmission is higher than for the edge arrangement simulated as a double system with one natural frequency. Analogous resonant phenomena are known to reduce the low-frequency transmission loss for symmetric triple windows or solid walls with identical air gaps and lightweight boards on both sides. The theoretical results obtained for the mechanical and acoustical models are in a good agreement with the experimental data.  相似文献   

8.
This paper is concerned with evaluating the error of conventional estimates of the boundary absorption of rectangular enclosures, with particular reference to reverberation room sound power measurements. The reverberation process is examined theoretically; the relative contributions to the decay rate from different modes in a rectangular room are calculated from an ensemble average over rooms with nearly the same dimensions. It is shown that the traditional method of determining the absorption of the walls of reverberation rooms systematically underestimates the absorption at low frequencies; the error is computed from the ensemble average. Finally, an unbiased estimate of the sound power radiated by a source in a reverberation room is derived. This estimate involves measurement of the initial decay rates of the room and is, unlike the usual reverberation room sound power estimate, neither based on statistical diffuse field considerations nor on the normal mode theory.  相似文献   

9.
In the acoustic consulting, testing, design and engineering work of the Fraunhofer-Institute of Building Physics (IBP) the low-frequency end of the noise spectra and the room acoustic conditioning has gained tremendous importance over the years. For solving the long-ranging noise pollution from e.g. exhaust stacks and chimneys, a series of low-frequency sound attenuators with minimum flow resistance were developed. Its first representative was a novel membrane absorber [10] [Ackermann U, et al., Sound absorbers of a novel membrane construction. Applied Acoustics 1998;25:197-215]. Thanks to its slenderness and ruggedness it could also be employed for noise control and reverberation adjustment purposes in relatively narrow enclosures and harsh environments [11] and [12] [Vér IL. Enclosures and wrappings. In: Harris CM, editor. Handbook of acoustical measurements and noise control. New York: McGraw-Hill, 1991; Fuchs HV, Hunecke J. The room plays its part at low frequencies. Das Musikinstrument 1993;42:40-6 (in German). Meanwhile a new type of panel absorber has been optimized for both kinds of application. Its absorption efficiency at frequencies far below 100 Hz could be demonstrated and quantified by a special measuring procedure based on the reverberation of a small rectangular room at its eigenfrequencies [3] (Zha X, et al. Measurements of an effective absorption coefficient below 100 Hz. Acoustics Bulletin 1999;24:5-10). With the aid of this novel tool it is now possible to qualify reverberation rooms and anechoic chambers for frequencies down to 63 and 31 Hz, respectively [9] (Fuchs HV, et al. Qualifying freefield and reverberation rooms for frequencies below 100 Hz. Applied Acoustics 2000;59:303-22). In a companion paper in this same journal [4] [Fuchs HV, et al.: Creating low-noise environments in communication rooms. Applied Acoustics (in print)] appropriate experience is reported in creating low-noise environments in multi-purpose rooms like offices, restaurants, foyers and seminars. A number of representative case studies [5] (Drotleff H, et al. : Attractive acoustic design of multi-purpose halls. 1. Chinese-German Platform Innovative Acoustics 2000, (October, 21-25. 2000)) show ample evidence that the low-frequency performance of the rooms has a strong influence on both the amplification of intruding external noise and the development of internally generated noise emanating from communication processes provoked by the users themselves. At work places where producing sound (by voices or/and instruments) is the main or only purpose for their existence, the acoustic qualification of the room at low frequencies turns out to be of the utmost importance, especially when musicians are forced to work in extremely narrow spaces like orchestra pits and rehearsal halls for many hours a day and often under extreme physical and mental pressure. The measures taken and described herein have proven to mitigate if not remove some of the acoustic burden put on musicians employed in states theatres.  相似文献   

10.
It is known that the sound field in a long space is not diffuse, and that the classic theory of room acoustics is not applicable. A theoretical model is developed for the prediction of reverberation time and speech transmission index in rectangular long enclosures, such as corridors and train stations, where the acoustic quality is important for speech. The model is based on an image-source method, and both acoustically hard and impedance boundaries are investigated. An approximate analytical solution is used to predict the frequency response of the sound field. The reverberation time is determined from the decay curve which is computed by a reverse-time integration of the squared impulse response. The angle-dependence of reflection coefficients of the boundaries and the change of phase upon reflection are incorporated in this model. Due to the relatively long distance of sound propagation, the effect of atmospheric absorption is also considered. Measurements of reverberation time and speech transmission index taken from a real tunnel, a corridor, and a model tunnel are presented. The theoretical predictions are found to agree well with the experimental data. An application of the proposed model has been suggested.  相似文献   

11.
Studies dedicated to the determination of acoustic characteristics of an automotive cooling package are presented. A shrouded subsonic axial fan is mounted in a wall separating an anechoic- and a reverberation room. This enables a unique separation of the up- and downstream sound fields. Microphone measurements were acquired of the radiated sound as a function of rotational speed, fan type and components included in the cooling module. The aim of the present work is to investigate the effect of a closely mounted radiator upstream of the impeller on the SPL spectral distribution. Upon examination of the SPL spectral shape, features linked specifically to the source and system are revealed. The properties of a reverberant sound field combined with the method of spectral decomposition permit an estimation of the source spectral distribution and the acoustic transfer response, respectively. Additionally, purely intrinsic acoustic properties of the radiator are scrutinized by standardized ISO methods. A new methodology comprising a dipole sound source is adopted to circumvent limitation of transmission loss measurement in the low frequency range. The sound attenuation caused by the radiator alone was found to be negligible.  相似文献   

12.
A study of the effects of damping on the low-frequency acoustics of listening rooms has been undertaken. The study was carried out using a new numerical implementation of an analytical solution based on a model developed by Bistafa and Morrissey. The model was designed to simulate the sound field in rectangular enclosures below the Schroeder cut-off frequency. Four hypothetical rooms were studied, a lightly damped room, a well damped room, a statistically compliant European Broadcast Union control room and a compliant European Broadcast Union control room. The most important result from the study using the proposed model was the influence of modes above the Schroeder cut-off frequency on reverberation time. This was caused by the variations in damping between mode types and variations in the modal coupling between the source and receiver. The research suggests that Schroeder's 1954 cut-off frequency for the influence of modes was more correct for highly damped rooms, in comparison with the Schroeder's 1964 relation.  相似文献   

13.
The characterization of low frequency sound transmission between two rooms via a flexible panel is investigated experimentally in this work. Previously, the individual effects of the transmission suite on the measured sound reduction index have been studied analytically, and the results have been compared with the ideal case of having free field radiation conditions on both sides of the panel. A new approach is proposed using a near-field array of loudspeakers driven by a set of optimized signals such that a diffuse pressure field is reproduced on the surface of the partition to be tested. The practical effectiveness of this method is assessed when using a set of 16 acoustic sources located in the source reverberant room in close proximity to an aluminium panel. The experimental results obtained confirm the dependence of the characterized sound reduction index on the particular test chamber considered in the low frequency range. They also validate the proposed synthesis method for providing an estimate that only depends on the properties of the partition itself.  相似文献   

14.
This study concerns the determination of an equivalent acoustic absorption model of the flat heterogeneous walls present in industrial rooms. Numerous measurements of the reverberation time in reverberant room were carried out for several facings with different distributed spatial absorption. Experimental results were compared to classical reverberation time models. The measurements showed that the change in average acoustic absorption depends on the relative distance between the sound source and the absorbent panels, as it is this which creates heterogeneity. Therefore, taking into consideration, in the theoretical models of average acoustic absorption studied, the solid angles representing the equivalent area of the panels as viewed by the source, improved the accuracy of the calculated reverberation time compared to the measurements. This equivalent acoustic absorption model, based on Sabine's absorption coefficient and employing the solid angle ratio, was used to calculate the reverberation time of several industrial rooms. The results obtained are better than those obtained with the standard formula.  相似文献   

15.
In this paper, a modal analysis was used to describe a reverberation phenomenon in a room of complex shape. A theoretical model was limited to low sound frequencies, when eigenmodes are lightly damped, thus they may be approximated by uncoupled normal acoustic modes of a hard-walled room. A utility of this method was demonstrated in a numerical example where the enclosure in a form of two coupled rooms was considered. A reverberation time was evaluated from a time decay of spatial root mean square pressure, the overall measure of room pressure. The results of calculations, performed for three different distributions of absorbing materials on room walls, showed how various location of the material can effect a dependence of the reverberation time on a frequency of sound source.  相似文献   

16.
Laboratory measurements of sound absorption by audiences are known to be scarcely reliable when applied to actual rooms as a consequence of several problems, among which the different area of the “sample” and the different distribution of the reflected sound may play important roles. When dealing with worship places, characterized by a variable degree of occupation and much lower absorption due to unoccupied seats, things become more complicated as absorption seems to be proportional to the number of occupants rather than to the area they cover (as normally accepted in performing spaces). The combination of these variables has been investigated by taking advantage of laboratory measurements and analysing their application to six churches, where on site measurements of reverberation time were carried out with and without occupation. The results are discussed both in terms of simple prediction formulae (Sabine, Eyring, and Arau-Purchades) and of computer simulations, showing that laboratory measurements may be reliably used in computer simulations (at least in the frequency range from 500 Hz on). At low frequencies greater attention must be paid as the absorption coefficients need to be corrected as a function of the actual distribution of the sound field in the room.  相似文献   

17.
A set of experiments was carried out to validate an optimization procedure based on finite element method (FEM). The idea of the procedure, fully presented in previous edition of this journal [Zhu X, Zhu Z, Cheng J. Using optimized surface modifications to improve low frequency response in a room. Appl Acoust 2004;65:841-60], is to produce an optimal geometry modification on the wall for improving low frequency sound uniformity in small rooms. Four experimental models were set up with a scale of 1:5. One was modified according to the optimized result and the others were treated with no optimization consideration. Measured frequency responses of four rooms were compared with numerical results calculated by FEM models. The transient responses in these rooms were also measured and analyzed. The agreements between calculation and measurement are satisfactory though the discrepancies due to the uncertainty of acoustic behavior of the room boundaries remain. The optimization procedure has been supported by the results that the optimized room produces the flattest frequency response and also the most smooth energy decay within the frequency range studied. The reductions of response fluctuation have reached 4.3 dB for prediction and 2.6 dB for measurement, respectively.  相似文献   

18.
The methods investigated for the room volume estimation are based on geometrical acoustics, eigenmode, and diffuse field models and no data other than the room impulse response are available. The measurements include several receiver positions in a total of 12 rooms of vastly different sizes and acoustic characteristics. The limitations in identifying the pivotal specular reflections of the geometrical acoustics model in measured room impulse responses are examined both theoretically and experimentally. The eigenmode method uses the theoretical expression for the Schroeder frequency and the difficulty of accurately estimating this frequency from the varying statistics of the room transfer function is highlighted. Reliable results are only obtained with the diffuse field model and a part of the observed variance in the experimental results is explained by theoretical expressions for the standard deviation of the reverberant sound pressure and the reverberation time. The limitations due to source and receiver directivity are discussed and a simple volume estimation method based on an approximate relationship with the reverberation time is also presented.  相似文献   

19.
The low-frequency bottom reverberation in a randomly inhomogeneous shallow water is investigated within the framework of a numerical experiment using vertical transmitting arrays focusing the acoustic field at various distances from the sea bottom. It is assumed that the main source of sound velocity fluctuations in the medium is represented by background internal waves. To focus the field, a phase conjugation of acoustic waves from a probe source positioned at the focusing point is used. It is demonstrated that the reverberation level is mainly determined by the presence of internal waves and may vary by 5–20 dB as the distance from the focusing point to the sea bottom increases up to H/2, where H is the channel depth.  相似文献   

20.
This paper is concerned with the analysis of the dependence of low frequency impact sound transmission through floating floor systems on in situ matched resonances. The evidence for the floating floor matched resonances has been found previously considering laboratory and numerical tests for one concrete slab and floating floor with varying resilient layers. In the present paper, considering laboratory and field tests for concrete slabs and floating floors with different plan configurations, this evidence is strengthened as differences between laboratory and field measurements of the impact sound level were negligible for the bare concrete slab but not with the floating floor installed. These results were also confirmed numerically. The analysis indicates that the dependence of low frequency impact sound transmission through floating floor systems on in situ matched resonances should be considered in addition to the conventional single degree of freedom models in order to improve accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号