首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics (MD) computer simulations of liquid water adsorbed on the muscovite (001) surface provide a greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural and orientational ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model phyllosilicate surface. MD simulations at constant temperature and volume (statistical NVT ensemble) were performed for a series of model systems consisting of a two-layer muscovite slab (representing 8 crystallographic surface unit cells of the substrate) and 0 to 319 adsorbed H2O molecules, probing the atomistic structure and dynamics of surface aqueous films up to 3 nm in thickness. The results do not demonstrate a completely liquid-like behavior, as otherwise suggested from the interpretation of X-ray reflectivity measurements and earlier Monte Carlo simulations. Instead, a more structurally and orientationally restricted behavior of surface H2O molecules is observed, and this structural ordering extends to larger distances from the surface than previously expected. Even at the largest surface water coverage studied, over 20% of H2O molecules are associated with specific adsorption sites, and another 50% maintain strongly preferred orientations relative to the surface. This partially ordered structure is also different from the well-ordered 2-dimensional ice-like structure predicted by ab initio MD simulations for a system with a complete monolayer water coverage. However, consistent with these ab initio results, our simulations do predict that a full molecular monolayer surface water coverage represents a relatively stable surface structure in terms of the lowest diffusional mobility of H2O molecules along the surface. Calculated energies of water adsorption are in good agreement with available experimental data.  相似文献   

2.
Combining experiments and DFT calculations, we show that tricoordinate Al(III) Lewis acid sites, which are present as metastable species exclusively on the major (110) termination of γ- and δ-Al(2)O(3) particles, correspond to the "defect" sites, which are held responsible for the unique properties of "activated" (thermally pretreated) alumina. These "defects" are, in fact, largely responsible for the adsorption of N(2) and the splitting of CH(4) and H(2). In contrast, five-coordinate Al surface sites of the minor (100) termination cannot account for the observed reactivity. The Al(III) sites, which are formed upon partial dehydroxylation of the surface (the optimal pretreatment temperature being 700 °C for all probes), can coordinate N(2) selectively. In combination with specific O atoms, they form extremely reactive Al,O Lewis acid-base pairs that trigger the low-temperature heterolytic splitting of CH(4) and H(2) to yield Al-CH(3) and Al-H species, respectively. H(2) is found overall more reactive than CH(4) because of its higher acidity, hence it also reacts on four-coordinate sites of the (110) termination. Water has the dual role of stabilizing the (110) termination and modifying (often increasing) both the Lewis acidity of the aluminum and the basicity of nearby oxygens, hence the high reactivity of partially dehyxdroxylated alumina surfaces. In addition, we demonstrate that the presence of water enhances the acidity of certain four-coordinate Al atoms, which leads to strong coordination of the CO molecule with a spectroscopic signature similar to that on Al(III) sites, thus showing the limits of this widely used probe for the acidity of oxides. Overall, the dual role of water translates into optimal water coverage, and this probably explains why in many catalyst preparations, optimal pretreatment temperatures are typically observed in the "activation" step of alumina.  相似文献   

3.
The interaction of atomic oxygen and nitrogen on the (0001) surface of corundum (alpha-alumina) is investigated from first-principles by means of periodic density functional calculations within the generalized gradient approximation. A large Al(2)O(3) slab model (18 layers relaxing 10) ended with the most stable aluminium layer is used throughout the study. Geometries, adsorption energies and vibrational frequencies are calculated for several stationary points for two spin states at different sites over an 1 x 1 unit cell. Two stable adsorption minima over Al or in a bridge between Al and O surface atoms are found for oxygen and nitrogen, without activation energies. The oxygen adsorption (e.g., E(ad) = 2.30 eV) seems to be much more important than for nitrogen (e.g., E(ad) = 1.23 eV). Transition states for oxygen surface diffusion are characterized and present not very high-energy barriers. The computed geometries and adsorption energies are consistent with similar adsorption theoretical studies and related experimental data for O, N or alpha-alumina. The present results along with our previous results for beta-cristobalite do not support the assumption of an equal E(ad) for O and N over similar oxides, which is commonly used in some kinetic models to derive catalytic atomic recombination coefficients for atomic oxygen and nitrogen. The magnitude of O and N adsorption energies imply that Eley-Rideal and Langmuir-Hinshelwood reactions with these species will be exothermic, contrary to what happens for beta-cristobalite.  相似文献   

4.
The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular preparation conditions. The stable surface in thermodynamic equilibrium with the bulk is formed by a vanadyl (VO) (1x1) surface layer, but an oxygen-rich (radical3xradical3)R30 degrees reconstruction can be prepared under a higher chemical potential of oxygen (microO), whereas a V-terminated surface consisting of a vanadium surface layer requires a low microO, which can be achieved experimentally by the deposition of V atoms onto the (1x1) VO surface. The latter two surfaces have been used to model, in a controlled way, oxygen and vanadium containing defect centres on V2O3. On the (1x1) V=O and (radical3xradical3)R30 degrees surfaces, which expose only oxygen surface sites, the experimental results indicate consistently that the molecular adsorption of water provides the predominant adsorption channel. In contrast, on the V-terminated (1/radical3x1/radical3)R30 degrees surface the dissociation of water and the formation of surface hydroxyl species at 100 K is readily observed. Besides the dissociative adsorption a molecular adsorption channel exists also on the V-terminated V2O3(0001) surface, so that the water monolayer consists of both OH and molecular H2O species. The V surface layer on V2O3 is very reactive and is reoxidised by adsorbed water at 250 K, yielding surface vanadyl species. The results of this study indicate that V surface centres are necessary for the dissociation of water on V2O3 surfaces.  相似文献   

5.
Atomic oxygen adsorption on the Mo(112) surface has been investigated by means of first-principles total energy calculations. Among the variety of possible adsorption sites it was found that the bridge sites between two Mo atoms of the topmost row are favored for O adsorption at low and medium coverages. At about one monolayer coverage oxygen atoms prefer to adsorb in a quasithreefold hollow sites coordinated by two first-layer Mo atoms and one second layer atom. The stability of a structural model for an oxygen-induced p(2 x 3) reconstruction of the missing-row type is examined.  相似文献   

6.
7.
A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.  相似文献   

8.
Relationships between structural parameters of MnO2 and their surface properties at the solid-gas interface were investigated. The studied series ranged from ramsdellite to pyrolusite and encompassed disordered gamma-MnO2 samples. The structural model used takes into account structural defects: Pr (rate of pyrolusite intergrowth in the ramsdellite network) and Tw (rate of microtwinning). Analysis of the N2 adsorption isotherm evidenced positive correlations between specific surface area and Tw for gamma-MnO2 only and between the energetic constant C and (1-Pr). No microporosity is evidenced. Water adsorption isotherms evidenced the dependence of the H2O monolayer volume on Tw and showed a positive correlation between the cross-section area of water molecules adsorbed in the first monolayer and Pr, ranging from 13.5 A2 for Pr=1 to 6.3 A2 for Pr=0.2 (12 sites/nm2). Energetic heterogeneity is quantified from Ar and N2 low-pressure adsorption isotherms with the DIS procedure and correlated with H2O adsorption. High-energy adsorption domains are quantified and assigned to the different crystal faces: (110) faces with a common 1 x 1 octahedra layer of pyrolusite and ramsdellite and the (001) face of ramsdellite with 2 x 2 octahedra on which channels and plateaus are differentiated. The specific surface area ratio of ramsdellite high-energy sites to total ramsdellite content is shown to depend on Tw. The dependence on microtwinning of low cross-sectional area of N2 and much lower cross-sectional of residual H2O molecules leads us to assume that their adsorption sites on grain boundaries are represented by the twin planes between the structured nanocrystals generated by oxygen evolution during MD synthesis.  相似文献   

9.
Periodic DFT calculations coupled to a first-principle thermodynamic approach have allowed us to establish a surface phase diagram for the different terminations of the α-Al(2)O(3) (1102) surface in various temperature and water pressure conditions. Theoretical results are compared with previous experimental data from the literature. Under a wide range of temperature and water pressure (including ambient conditions) the most stable surface (denoted C2_1H(2)O in this work) is terminated with singly coordinated hydroxyls on four-fold coordinated aluminium (Al(4C)-μ(1)-OH) while most existing surface models are only considering six-fold coordinated surface Al atoms as in the bulk structure of alumina. The presence of more acidic Al(4C)-μ(1)-OH sites helps explain the low Point of Zero Charge (PZC) (between 5 and 6) determined from the onset of Mo oxoanions adsorption on (1102) single crystal wafers. It is also postulated that another termination (corresponding to the hydration of the non-polar, stoichiometric surface, stable in dehydrated conditions) may be observed in aqueous solution depending on the surface preparation conditions.  相似文献   

10.
燃煤烟气属于贫燃燃烧 (燃烧时通入过量空气 )尾气 ,其中除含 NOx、SO2 外还含有 O2 等 ,与非贫燃系统尾气中 NOx 的催化还原脱除相比有着很大的不同 .目前这一领域的研究工作虽然取得一些进展 ,但仍有许多问题尚待解决 [1] .无论是 NOx 的催化还原还是催化分解 ,气相中存在的SO2 对非贵金属及其氧化物催化剂构成了严重威胁 ,原因是非贵金属氧化物很容易吸收 SO2 生成稳定的硫酸盐而使催化剂中毒失活 .为脱除烟气中的 NOx,有报道先将气相中的 NO催化氧化为NO2 ,然后将 NO2 和 SO2 同时液相吸收 .研究表明 ,作为 NO催化氧化的非贵…  相似文献   

11.
采用电子自旋共振技术结合自旋标记方法研究了聚丙烯酸钠在Al2O3/水界面吸附的分子构型和运动行为。结果表明,哌啶氮氧自由基在聚丙烯酸钠分子上是链间标记,它的运动受到聚合物长链的束缚;聚丙烯酸钠在Al2O3上的吸附等温线呈Langmuir型,随表面吸附量的增加,吸附在Al2O3上的聚丙烯酸钠分子的固着链节分数减小,从平衡浓度0.25mg/ml时的0.90变化到饱和吸附时的0.65。聚丙烯酸负离子通过静电引力多点吸附在Al2O3表面,分子中的大部分链节平躺在Al2O3表面,少部分链节伸向溶液。  相似文献   

12.
CuO/Al2O3催化剂中毒与氧吸附   总被引:3,自引:0,他引:3  
The effect of CuSO4 on the property of catalyst CuO/Al2O3 hasbeen investigated. The TPD-MS results showed that the amount of oxygen adsorbed on the surface of CuSO4-CuO/Al2O3 increased with CuSO4 content in the catalyst and the oxygen desorbed only at temperature above 900 K. TPSR results showed three adsorption sites of NO on the surface of CuO/Al2O3, respectively at 398, 643 and 683 K. The active site at 683 K was for NO decomposition and it was poisoned seriously when there was CuSO4 in the CuO/Al2O3. For CuSO4-CuO/Al2O3 the amount of N2O formed from NO decomposition reduced probably due to the increase of oxygen species in the catalyst.  相似文献   

13.
We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.  相似文献   

14.
The structural and energetic features of a variety of gas-phase aluminum ion hydrates containing up to 18 water molecules have been studied computationally using density functional theory. Comparisons are made with experimental data from neutron diffraction studies of aluminum-containing crystal structures listed in the Cambridge Structural Database. Computational studies indicate that the hexahydrated structure Al[H(2)O](6)(3+) (with symmetry T(h)()), in which all six water molecules are located in the innermost coordination shell, is lower in energy than that of Al[H(2)O](5)(3+).[H(2)O], where only five water molecules are in the inner shell and one water molecule is in the second shell. The analogous complex with four water molecules in the inner shell and two in the outer shell undergoes spontaneous proton transfer during the optimization to give [Al[H(2)O](2)[OH](2)](+).[H(3)O(+)](2), which is lower in energy than Al[H(2)O](6)(3+); this finding of H(3)O(+) is consistent with the acidity of concentrated Al(3+) solutions. Since, however, Al[H(2)O](6)(3+) is detected in solutions of Al(3+), additional water molecules are presumed to stabilize the hexa-aquo Al(3+) cation. Three models of a trivalent aluminum ion complex surrounded by a total of 18 water molecules arranged in a first shell containing 6 water molecules and a second shell of 12 water molecules are discussed. We find that a model with S(6) symmetry for which the Al[H(2)O](6)(3+) unit remains essentially octahedral and participates in an integrated hydrogen bonded network with the 12 outer-shell water molecules is lowest in energy. Interactions between the 12 second-shell water molecules and the trivalent aluminum ion in Al[H(2)O](6)(3+) do not appear to be sufficiently strong to orient the dipole moments of these second-shell water molecules toward the Al(3+) ion.  相似文献   

15.
A computational study of the adsorption and diffusion behavior of alkali and alkaline earth metal atoms on a phosphorene monolayer is reported. Our calculations were performed within the framework of density functional theory using the Perdew–Burke–Ernzerhof functional and projector augmented wave potentials, as derived from the generalized gradient approximation. Our binding energy calculations for various potential adsorption sites showed that the site located above the center of a triangle formed by three surface phosphorus atoms is the most attractive to all adatoms. In addition, simulation of the diffusion of adatoms across the surface of the phosphorene monolayer showed that the diffusion is anisotropic, with K having the lowest diffusion barrier (0.02 eV along the zigzag pathway). To the best of our knowledge, this is the lowest diffusion barrier of any metal adatom on a single layer of phosphorene. While phosphorene exhibited significantly better adatom adsorption and diffusion than graphene, it also showed a reduced storage capacity compared to graphene, most probably due to the structural distortion induced by the oversaturated phosphorene surface. This finding strongly suggests that a phosphorene–graphene hybrid system could be employed as a promising high-capacity ion anode.  相似文献   

16.
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (${\mu _{\rm{O}} }$ ), the vacancy formation and adsorption energies were determined as a function of ${\mu _{\rm{O}} }$ . Under oxygen‐rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen‐poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies.  相似文献   

17.
Ni‐based layer‐structured cathode materials are more vulnerable to moisture than conventional LiCoO2 cathodes, adsorbing more water and easily forming LiOH on the surface. This study investigated the moisture adsorption mechanism on the surface of layer‐structured cathodes. The behavior of water molecules on LiCoO2 and LiNiO2 surfaces were simulated and the structural and chemical changes during the adsorption process were analyzed by first‐principles methods. It was found that the adsorption occurs via two types of mechanism: one involving ionic interactions between Li on the crystal surface and O in the adsorbate, and the other involving covalent bonding between the transition metal (TM) on the surface and O in the adsorbate, which restores the coordination of the TM by recovering its broken bonds. The difference between the water adsorption behaviors of Ni‐based and Co‐based layer‐structured cathodes was found to be mainly due to the ionic‐interaction‐driven adsorption on the (003) surface.  相似文献   

18.
Surface reactions of nitrogen oxides with aluminium oxide particles result in the formation of adsorbed nitrate. Specifically, when alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are exposed to gas-phase NO(2) and HNO(3) adsorbed nitrate forms on the surface. In this study, Fourier transform infrared (FTIR) spectroscopy is combined with quantum chemical calculations to further our understanding of the adsorbed nitrate product on aluminium oxide particle surfaces in the presence and absence of co-adsorbed water at 296 K. FTIR spectra of adsorbed nitrate on alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are interpreted using calculated vibrational frequencies of nitrate coordinated to binuclear Al oxide cluster models. Comparison of the calculated and experimental vibrational frequencies of adsorbed nitrate establishes different modes of coordination (monodentate, bidentate and bridging) of the nitrate ion to the surface in the absence of adsorbed water. In the presence of co-adsorbed water, the nitrate ion becomes fully solvated, as shown by a comparison of the experimental nitrate infrared spectra as a function of relative humidity with the calculated nitrate vibrational frequencies for binuclear Al cluster compounds which contain both coordinated nitrate ions and water molecules. These calculations also suggest that adsorbed water can displace nitrate from direct coordination to the surface, leading to an outer-sphere nitrate adsorption complex as well as an inner-sphere complex. Furthermore, the relative humidity dependence of the spectra suggest that water does not evenly wet the surface even at high relative humidity, as there are open or bare surface sites where nitrate ions are not solvated. Besides adsorbed mondendate, bidendate, bridging and solvated nitrate, the presence of ion bound nitrate ion, partially solvated nitrate, molecular nitric acid, hydronium ion and H(3)O(+):NO(3)(-) ion pairs on the oxide surface are also discussed.  相似文献   

19.
Ab initio density-functional theory and thermodynamics calculations are combined to establish a microscopic mechanism for the oxidation of the α(2)-Ti(3)Al(0001) surface. The surface energies as functions of the chemical potentials, as well as structural relaxations and electronic densities of states, are determined. The surface phase diagram (SPD) of the α(2)-Ti(3)Al(0001) systems with different defects and at various oxygen coverages is constructed. It is found that the Al antisite defect prefers to segregate on the α(2)-Ti(3)Al(0001) surface and oxygen adsorption enhances the segregation with the formation of the surface with three Al antisites per unit surface cell (i.e. the top surface layer is full of Al atoms) at the initial stage of oxidation, accounting for the aluminum selective oxidation observed experimentally. After the initial stage of oxidation, the O-α(2)-Ti(3)Al(0001) system manifests itself with a non-uniform double-phase SPD, suggesting the competition between oxidations of the Al and Ti elements in the oxidation process. This result explains the experimentally observed second regime of oxidation in which both metal elements are oxidized.  相似文献   

20.
用阶跃过渡应答技术研究了乙烷氧化脱氢反应的反应物C_2H_6,O_2,产物C_2H_4和主要副产物CO_2在MoO_3-V_2O_5/Al_2O_3催化剂上的吸附行为。结果表明:C_2H_6和C_2H_4在该催化剂上不吸附;氧为慢吸附、不可逆吸附;CO_2为可逆吸附,吸附量较小。并发现在无氧的条件下,乙烷能与催化剂表面上的晶格氧反应生成乙烯。这些结果对乙烷氧化脱氢反应机理的探讨有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号