首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of classical parallel computing. We compare this new one with other attempts towards hypercomputation by separating (1) its %principal computing capabilities from (2) realizability issues. The first are shown to coincide with recursive enumerability; the second are considered in analogy to ‘existence’ in mathematical logic. PACS (2003): 03.67. Supported by DFG project Zi1009/1-1.  相似文献   

2.
A recently developed unified theory of classical and quantum chaos, based on the de Broglie-Bohm (Hamilton-Jacobi) formulation of quantum mechanics is presented and its consequences are discussed. The quantum dynamics is rigorously defined to be chaotic if the Lyapunov number, associated with the quantum trajectories in de Broglie-Bohm phase space, is positive definite. This definition of quantum chaos which under classical conditions goes over to the well-known definition of classical chaos in terms of positivity of Lyapunov numbers, provides a rigorous unified definition of chaos on the same footing for both the dynamics. A demonstration of the existence of positive Lyapunov numbers in a simple quantum system is given analytically, proving the existence of quantum chaos. Breaking of the time-reversal symmetry in the corresponding quantum dynamics under chaotic evolution is demonstrated. It is shown that the rigorous deterministic quantum chaos provides an intrinsic mechanism towards irreversibility of the Schrodinger evolution of the wave function, without invoking ‘wave function collapse’ or ‘measurements’  相似文献   

3.
L P Singh  B Ram 《Pramana》2002,58(4):591-597
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering ‘mass’ as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the ‘physical’ significance of the supersymmetric states in this formalism.  相似文献   

4.
D. Sen 《Pramana》2009,72(5):765-775
On the face of some recent experiments claiming the simultaneous presence of both ‘sharp interference’ and ‘highly reliable which way information’ and some others casting light on the origin of complementarity in quantum interferometric experiments, the whole issue is reviewed on the basis of our earlier precise formulation of Bohr’s complementarity principle. It is pointed out that contradicting the principle (in this specific formulation) is impossible without contradicting quantum mechanics and a lack of general consensus regarding the origin of the mutual exclusiveness is at the root of the controversy and confusions.   相似文献   

5.
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths’ reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent ‘consistent framework’ ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows, in response to Griffiths’ challenge, why a putative proof of locality that he has described is flawed.  相似文献   

6.
The Copenhagen interpretation is critically considered. A number of ambiguities, inconsistencies and confusions are discussed. It is argued that it is possible to purge the interpretation so as to obtain a consistent and reasonable way to interpret the mathematical formalism of quantum mechanics, which is in agreement with the way this theory is dealt with in experimental practice. In particular, the essential role attributed by the Copenhagen interpretation to measurement is acknowledged. For this reason it is proposed to refer to it as a neo-Copenhagen interpretation.  相似文献   

7.
A K Mishra  G Rajasekaran 《Pramana》1995,45(2):91-139
We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ‘infinite’, Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are: new algebras for infinite statistics,q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ‘doubly-infinite’ statistics, many representations of orthostatistics, Hubbard statistics and its variations.  相似文献   

8.
We analyze the effects of inelastic scattering on the tunneling time theoretically, using generalized Nelson’s quantum mechanics. This generalization enables us to describe quantum system with channel couplings and optical potential in a real time stochastic approach, which seems to give us a new insight into quantum mechanics beyond Copenhagen interpretation  相似文献   

9.
The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the so-called “quantum liar paradox,” an experimental set-up alleged to be problematic for a spacetime conception of reality, and conclude by speculating on RBW’s implications for quantum gravity.  相似文献   

10.
A recent ontological variant of Cramer’s Transactional Interpretation, called “Possibilist Transactional Interpretation” or PTI, is extended to the relativistic domain. The present interpretation clarifies the concept of ‘absorption,’ which plays a crucial role in TI (and in PTI). In particular, in the relativistic domain, coupling amplitudes between fields are interpreted as amplitudes for the generation of confirmation waves (CW) by a potential absorber in response to offer waves (OW), whereas in the nonrelativistic context CW are taken as generated with certainty. It is pointed out that solving the measurement problem requires venturing into the relativistic domain in which emissions and absorptions take place; nonrelativistic quantum mechanics only applies to quanta considered as ‘already in existence’ (i.e., ‘free quanta’), and therefore cannot fully account for the phenomenon of measurement, in which quanta are tied to sources and sinks.  相似文献   

11.
This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the claim that the quantum nature of a preparation device cannot legitimately be ignored. Both Bayesians and proponents of the OPV regard the time dependence of a quantum state as the continuous dependence on time of an evolving state of some kind. This leads to a false dilemma: quantum states are either objective states of nature or subjective states of belief. In reality they are neither. The present paper views the aforesaid dependence as a dependence on the time of the measurement to whose possible outcomes the quantum state serves to assign probabilities. This makes it possible to recognize the full implications of the only testable feature of the theory, viz., the probabilities it assigns to measurement outcomes. Most important among these are the objective fuzziness of all relative positions and momenta and the consequent incomplete spatiotemporal differentiation of the physical world. The latter makes it possible to draw a clear distinction between the macroscopic and the microscopic. This in turn makes it possible to understand the special status of measurements in all standard formulations of the theory. Whereas Bayesians have written contemptuously about the “folly” of conjoining “objective” to “probability,” there are various reasons why quantum-mechanical probabilities can be considered objective, not least the fact that they are needed to quantify an objective fuzziness. But this cannot be appreciated without giving thought to the makeup of the world, which Bayesians refuse to do. Doing this on the basis of how quantum mechanics assigns probabilities, one finds that what constitutes the macroworld is a single Ultimate Reality, about which we know nothing, except that it manifests the macroworld or manifests itself as the macroworld. The so-called microworld is neither a world nor a part of any world but instead is instrumental in the manifestation of the macroworld. Quantum mechanics affords us a glimpse “behind” the manifested world, at stages in the process of manifestation, but it does not allow us to describe what lies “behind” the manifested world except in terms of the finished product—the manifested world, for without the manifested world there is nothing in whose terms we could describe its manifestation.  相似文献   

12.
A method for introducing relativistic quantum mechanics to energy students is described. The method complements existing modern physics courses and relies on Feynman’s relativistic path integral approach to display a relationship between classical dynamics, quantum theory, and relativistic quantum theory.  相似文献   

13.
Relational EPR     
We study the EPR-type correlations from the perspective of the relational interpretation of quantum mechanics. We argue that these correlations do not entail any form of “non-locality”, when viewed in the context of this interpretation. The abandonment of strict Einstein realism implied by the relational stance permits to reconcile quantum mechanics, completeness, (operationally defined) separability, and locality.  相似文献   

14.
We clarify Bohrs interpretation of quantum mechanics by demonstrating the central role played by his thesis that quantum theory is a rational generalization of classical mechanics. This thesis is essential for an adequate understanding of his insistence on the indispensability of classical concepts, his account of how the quantum formalism gets its meaning, and his belief that hidden variable interpretations are impossible.  相似文献   

15.
The Geneva–Brussels approach to quantum mechanics (QM) and the semantic realism (SR) nonstandard interpretation of QM exhibit some common features and some deep conceptual differences. We discuss in this paper two elementary models provided in the two approaches as intuitive supports to general reasonings and as a proof of consistency of general assumptions, and show that Aerts’ quantum machine can be embodied into a macroscopic version of the microscopic SR model, overcoming the seeming incompatibility between the two models. This result provides some hints for the construction of a unified perspective in which the two approaches can be properly placed.  相似文献   

16.
17.
Several errors in Stapp's interpretation of quantum mechanics and its application to mental causation (Henry P. Stapp, Quantum theory and the role of mind in nature, Foundations of Physics 31, 1465–1499 (2001)) are pointed out. An interpretation of (standard) quantum mechanics that avoids these errors is presented.  相似文献   

18.
19.
Several situations, in which an empty wave causes an observable effect, are reviewed. They include an experiment showing surrealistic trajectories proposed by Englert et al. and protective measurement of the density of the quantum state. Conditions for observable effects due to empty waves are derived. The possibility (in spite of the existence of these examples) of minimalistic interpretation of Bohmian quantum mechanics in which only Bohmian positions supervene on our experience is discussed.  相似文献   

20.
The Titius–Bode law for planetary distances is reviewed. A model describing the basic features of this rule in the “quantum-like” language of a wave equation is proposed. Some considerations about the ’t Hooft idea on the quantum behavior of deterministic systems with dissipation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号