首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal desorption of o-terphenyl thin-film bilayers was used to measure self-diffusion coefficients of supercooled o-terphenyl near the glass transition temperature (Tg=243 K). Diffusion coefficients from 10(-15.5) to 10(-12) cm2 s(-1) were obtained between 246 and 265 K. Protio and deuterio o-terphenyl were sequentially vapor deposited, then annealed to simultaneously diffuse and desorb the sample in a vacuum chamber. During the desorption of the bilayer, the concentration of each isotope was detected by a mass spectrometer, which revealed the extent of interfacial broadening. In these experiments, isotopic interdiffusion is indistinguishable from self-diffusion and the measured interfacial broadening is consistent with Fickian diffusion. The samples prepared under several different deposition conditions yielded the same self-diffusion coefficients, indicating that the experiments were conducted in the equilibrium supercooled liquid state.  相似文献   

2.
The translational dynamics of the low molecular weight glass-former tris(naphthylbenzene) have been studied on the length scale of a few nanometers at the glass transition temperature Tg. Neutron reflectivity was used to measure isotopic interdiffusion of multilayer samples created by physical vapor deposition. Deposition with the substrate held at Tg-6 K allows observation of dynamics characterizing the equilibrium supercooled liquid. The diffusion coefficient measured at q = 0.03 A(-1) was determined to be 1x10(-17) cm2/s at 342 K (Tg). The self-part of the intermediate scattering function I(s)(q,t) decays exponentially. Samples deposited well below Tg show a substantial thermal history effect during subsequent translational motion at Tg.  相似文献   

3.
Supercooled o-terphenyl has been the subject of many investigations including dielectric relaxation spectroscopy. Due to the low dielectric strength and the tendency to crystallize at elevated temperatures, a detailed shape analysis of the loss profile from the glass transition temperature Tg to approximately 1.2 Tg is not available for the neat glass former. Assessing the origin of the different temperature dependencies of translational and rotational motions in supercooled liquids and its possible connection to heterogeneity requires this knowledge regarding the possible changes in the relaxation-time distribution across the 100 s-100 ns relaxation-time range. This note provides this information for o-terphenyl on the basis of a master curve representation: time-temperature superposition applies with a constant stretching exponent of beta=0.5 in the range of interest.  相似文献   

4.
Using three crystal polymorphs of indomethacin (IMC), we tested two interpretations of the enhanced crystal growth kinetics near the glass transition temperature Tg. This enhancement refers to the stronger temperature dependence of liquid viscosity eta than crystal growth rate (corrected for thermodynamic driving force). This enhancement is attributed in the first interpretation to an increase of the number of preferred interfacial growth sites with decreasing temperature and, in the second interpretation, to the breakdown of the Stokes-Einstein relation in deeply supercooled liquids. We measured the growth rates of the IMC polymorphs (alpha, gamma, and delta) from Tg + 9 K (Tg = 314 K) to near the respective melting points. From Tg + 19 K to Tg + 69 K, the growth rates of the polymorphs changed by 10(4) fold but displayed the same temperature dependence (eta-0.78) after corrections for thermodynamic driving forces. These results argue for a liquid-state origin of the enhanced growth kinetics. Below ca. Tg + 19 K, delta IMC continued to grow in the same spherulite morphology but alpha and gamma IMC grew in different, fiberlike morphologies and, if measured consistently, at faster rates. We conclude that the liquid dynamics of IMC controls its crystal growth kinetics over a wide range of temperatures but changes of growth morphologies near Tg also lead to apparent acceleration of growth of certain polymorphs. This work also extended a previous study of D-sorbitol to lower temperatures to enable a broader analysis of crystal growth kinetics of organic molecules near Tg.  相似文献   

5.
Self-diffusion and structural properties of ammonia, methylamine and trimethylamine have been studied by molecular dynamics simulation in the temperature range between the melting pressure curve and 700 K at pressures up to 400 MPa. The calculation results agree well with the experiment, which suggests that one can use the simulation method as a powerful tool to obtain self-diffusion coefficients over wide range of temperatures and pressures, under which it is rather difficult for experiments. The local structures of such fluids are investigated by calculating radial distribution functions (RDFs), the numbers of hydrogen bonds and coordination numbers. The correlation between self-diffusion and structural properties, and the influence of temperature and pressure on them are discussed. The simulation results demonstrate that the temperature effects are more pronounced than the pressure effects on self-diffusion and structural properties, and the effect of hydrogen bonding on the translational dynamics in any of these systems is a minor factor, while it is mainly affected by the close packing of amine molecules.  相似文献   

6.
Physical vapor deposition of indomethacin (IMC) was used to prepare glasses with unusual thermodynamic and kinetic stability. By varying the substrate temperature during the deposition from 190 K to the glass transition temperature (Tg=315 K), it was determined that depositions near 0.85Tg (265 K) resulted in the most stable IMC glasses regardless of substrate. Differential scanning calorimetry of samples deposited at 265 K indicated that the enthalpy was 8 J/g less than the ordinary glass prepared by cooling the liquid, corresponding to a 20 K reduction in the fictive temperature. Deposition at 265 K also resulted in the greatest kinetic stability, as indicated by the highest onset temperature. The most stable vapor-deposited IMC glasses had thermodynamic stabilities equivalent to ordinary glasses aged at 295 K for 7 months. We attribute the creation of stable IMC glasses via vapor deposition to enhanced surface mobility. At substrate temperatures near 0.6Tg, this mobility is diminished or absent, resulting in low stability, vapor-deposited glasses.  相似文献   

7.
《Chemical physics letters》1987,141(3):251-254
Self-diffusion coefficients of 27Al and H2O were determined by the NMR pulsed-field-gradient method in a series of AlCl3 solutions. From these data, bulk water self-diffusion coefficients are derived. It is shown that the relative influence on the bulk water translational motion agrees reasonably with the relative influence on the reorientational motion as reported in previous work. The bulk water self-diffusion is interpreted using a hydrodynamical model.  相似文献   

8.
Spin-polarized echo-detected electron paramagnetic resonance (EPR) spectra and the transversal relaxation rate T2(-1) of the photoexcited triplet state of fullerene C60 molecules were studied in o-terphenyl, 1-methylnaphthalene, and decalin glassy matrices. The model is composed of a fast (correlation time approximately 10(-12) s) pseudorotation of (3)C60 in a local anisotropic potential created by interaction of the fullerene molecule with the surrounding matrix molecules. In simulations, this potential is assumed to be axially symmetric around some axis of a preferable orientation in a matrix cage. The fitted value of the potential was found to depend on the type of glass and to decrease monotonically with a temperature increase. A sharp increase of the T2(-1) temperature dependence was found near 240 K in glassy o-terphenyl and near 100 K in glassy 1-methylnaphthalene and decalin. This increase probably is related to the influence on the pseudorotation of the onset of large-amplitude vibrational molecular motions (dynamical transition in glass) that are known for glasses from neutron scattering and molecular dynamics studies. The obtained results suggest that molecular and spin dynamics of the triplet fullerene are extremely sensitive to molecular motions in glassy materials.  相似文献   

9.
The translational diffusion coefficient D(trans) for rubrene, 9,10-bis(phenylethynyl)anthracene (BPEA), and tetracene in the fragile molecular glass-former sucrose benzoate (SB) (Tg=337 K) was studied as a function of temperature from Tg+3 K to Tg+71 K by use of the holographic fluorescence recovery after photobleaching technique. The values of D(trans) vary by five to six orders of magnitude in this temperature range. Contrary to the predictions of the Stokes-Einstein equation, the temperature dependence of probe diffusion in SB over the temperature range of the measurements is weaker than that of T/eta, where eta is the shear viscosity. In going from the crossover temperature Tx approximately 1.2Tg to Tg, D(trans)eta/T increases by factors of 2.4+/-0.2 decades for rubrene, 3.4+/-0.2 decades for BPEA, and 3.8+/-0.4 decades for tetracene. The decoupling between probe diffusion in SB and viscosity is characterized by the scaling law D(trans) approximately T/eta(xi), with xi=0.621 for tetracene, 0.654 for BPEA, and 0.722 for rubrene. Data for probe diffusion in SB are combined with data from the literature for probe diffusion in ortho-terphenyl and alphaalphabeta-tris(naphthyl)benzene in a plot of enhancement versus the relative probe size parameter rho(m)=(m(p)m(h))(1/3), where m(p) and m(h) are, respectively, the molecular weights of the probe and host solvent. The plot clearly shows a sharp increase in enhancement of translational diffusion at rho(m) approximately 1. By applying temperature shifts, D(trans) for probe diffusion in SB and the dielectric relaxation time tau(D) can be superimposed on a single master curve based on the Williams-Landel-Ferry equation. This suggests that the dynamics of probe diffusion in SB is described by the scaling relationship D(trans) approximately 1/tau(D)(T+DeltaT), where tau(D)(T+DeltaT) is the temperature-shifted dielectric relaxation time. The results from this study are discussed within the context of dynamic heterogeneity in glass-forming liquids.  相似文献   

10.
We studied the self-diffusion of colloidal ellipsoids in a monolayer near a flat wall by video microscopy. The image processing algorithm can track the positions and orientations of ellipsoids with subpixel resolution. The translational and rotational diffusions were measured in both the laboratory frame and the body frame along the long and short axes. The long-time and short-time diffusion coefficients of translational and rotational motions were measured as functions of the particle concentration. We observed the nondiffusive crossover region in the intermediate time regime due to the caging of neighboring particles. Both the beginning and the ending times of the intermediate regime exhibit power-law dependence on concentration. The long-time and short-time diffusion anisotropies change nonmonotonically with concentration and reach minima in the semidilute regime because the motions along long axes are caged at lower concentrations than the motions along short axes. The time derivatives of mean-square displacements change linearly with the inverse of time in the intermediate time regimes at various particle densities. This indicates that their relaxation functions decay as 1/t which provides new challenges in theory. The effects of coupling between rotational and translational Brownian motions were demonstrated and the two time scales corresponding to anisotropic particle shape and anisotropic neighboring environment were measured.  相似文献   

11.
We present incoherent quasi-elastic neutron scattering measurements in a wave vector transfer range from 0.4 A?(-1) to 1.6A? (-1) on liquid n-hexane confined in cylindrical, parallel-aligned nanochannels of 6 nm mean diameter and 260 μm length in monolithic, mesoporous silicon. They are complemented with, and compared to, measurements on the bulk system in a temperature range from 50 K to 250 K. The time-of-flight spectra of the bulk liquid (BL) can be modeled by microscopic translational as well as fast localized rotational, thermally excited, stochastic motions of the molecules. In the nano-confined state of the liquid, which was prepared by vapor condensation, we find two molecular populations with distinct dynamics, a fraction which is immobile on the time scale of 1 ps to 100 ps probed in our experiments and a second component with a self-diffusion dynamics slightly slower than observed for the bulk liquid. No hints of an anisotropy of the translational diffusion with regard to the orientation of the channels' long axes have been found. The immobile fraction amounts to about 5% at 250 K, gradually increases upon cooling and exhibits an abrupt increase at 160 K (20 K below bulk crystallization), which indicates pore freezing.  相似文献   

12.
Nanoscale sliding friction involving a polystyrene melt near its glass transition temperature Tg (373 K) exhibited dissipation phenomena that provide insight into the underlying molecular relaxation processes. A dissipative length scale that shows significant parallelism with the size of cooperatively rearranging regions (CRRs) could be experimentally deduced from friction-velocity isotherms, combined with dielectric loss analysis. Upon cooling to approximately 10 K above Tg, the dissipation length Xd grew from a segmental scale of approximately 3 A to 2.1 nm, following a power-law relationship with the reduced temperature Xd approximately TR-phi. The resulting phi=1.89+/-0.08 is consistent with growth predictions for the length scale of CRRs in the heterogeneous regime of fragile glass formers. Deviations from the power-law behavior closer to Tg suggest that long-range processes, e.g., the normal mode or ultraslow Fischer modes, may couple with the alpha relaxation, leading to energy dissipation in domains of tens of nanometers.  相似文献   

13.
Gao  Yang-Yang  Hu  Feng-Yan  Liu  Jun  Wang  Zhao 《高分子科学》2018,36(1):119-128
t In this work,the effect of the fullerene (C60) weight fraction and PB-C60 interaction on the glass transition temperature (Tg) of polymer chains has been systemically investigated by adopting the united atom model of cis-1,4-poly(butadiene) (cis-PB).Various chain dynamics properties,such as atom translational mobility,bond/segment reorientation dynamics,torsional dynamics,conformational transition rate and dynamic heterogeneity of the cis-PB chains,are analyzed in detail.It is found that Tg could be affected by the C60 weight fraction due to its inhibition effect on the mobility of the cis-PB chains.However,Tg is different,which depends on different dynamics scales.Among the chain dynamics properties,Tg is the lowest from atom translational mobility,while it is the highest from the dynamic heterogeneity.In addition,Tg can be more clearly distinguished from the dynamic heterogeneity;however,the conformational transition rate seems to be not very sensitive to the C60 weight fraction compared with others.For pure cis-PB chains,Tg and the activation energy in this work can be compared with those of other polymers.In addition,the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg.The activation energy below Tg is lower than that above Tg.This work can help to understand the effect of the C60 on the dynamic properties and glass transition temperature of the cis-PB chains from different scales.  相似文献   

14.
Self-diffusion measurement of solutes in polymer gels has been investigated using pulsed gradient spin echo NMR spectroscopy. However, few data are available on the self-diffusion of small solutes in natural polysaccharide polymers used as thickeners in the food industry. Since aroma diffusion in food matrices could have an impact on flavor release, this is an interesting and economic challenge. Diffusion ordered spectroscopy (DOSY) resolves diffusion data for each component in complex mixtures. We used DOSY with the inverse Laplace transform approach with the maximum entropy algorithm to investigate diffusion of two aroma compounds, ethyl butanoate and linalool, in an iota-carrageenan matrix as the food model. We showed that the self-diffusion coefficient values of small molecules in a polysaccharide matrix could be easily extracted using this method. We then investigated the impact of the gelling state of iota-carrageenan matrices on the self-diffusion of ethyl butanoate.  相似文献   

15.
Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed.  相似文献   

16.
17.
Molecular dynamics and Langevin dynamics simulations are used to elucidate the behavior of liquid atoms near a solid boundary. Correlations between the surface wettability and spatial variations in liquid density and structure are identified. The self-diffusion coefficient tensor is predicted, revealing highly anisotropic and spatially varying mass transfer phenomena near the solid boundary. This behavior affects self-diffusion at a range of time scales. Near a more-wetting surface, self-diffusion is impeded by strong solid-liquid interactions that induce sharp liquid density gradients and enhanced liquid structure. Conversely, near a less-wetting surface, where solid-liquid interactions are weaker, the liquid density is low, the atoms are disordered, and diffusion is enhanced. These findings suggest that altering the wettability of a micro- or nanochannel may provide a passive means for controlling the diffusion of select targets towards a functionalized surface and controlling the reaction rate in diffusion-limited reactions.  相似文献   

18.
From their experimental studies of the supercooled molecular ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-HFP), Ito and Richert [J. Phys. Chem. B 2006, in press.] found that the Stokes-Einstein and the Debye-Stokes-Einstein laws do not hold. Instead, enhanced translational diffusion or fractional Stokes-Einstein and fractional Debye-Stokes-Einstein relations are observed, just like in nonionic glass-forming liquids, including 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene, o-terphenyl, and sucrose benzoate. The comprehensive measurements made by Ito and Richert have determined the critical parameters that the coupling model needs to explain the observed fractional Stokes-Einstein and fractional Debye-Stokes-Einstein relations in the supercooled molecular ionic liquid.  相似文献   

19.
Mobility of molecules in confined geometry has been studied extensively, but the origins of finite size effects on reduction of the glass transition temperature, T(g), are controversial especially for supported thin films. We investigate uptake of probe molecules in vapor-deposited thin films of cumene, 3-methylpentane, and heavy water using secondary ion mass spectrometry and discuss roles of individual molecular motion during structural relaxation and glass-liquid transition. The surface mobility is found to be enhanced for low-density glasses in the sub-T(g) region because of the diffusion of molecules on pore walls, resulting in densification of a film via pore collapse. Even for high-density glasses without pores, self-diffusion commences prior to the film morphology change at T(g), which is thought to be related to decoupling between translational diffusivity and viscosity. The diffusivity of deeply supercooled liquid tends to be enhanced when it is confined in pores of amorphous solid water. The diffusivity of molecules is further enhanced at temperatures higher than 1.2-1.3 T(g) irrespective of the confinement.  相似文献   

20.
By pulsed field gradient nuclear magnetic resonance measurements, we investigated the translational diffusion of water confined in the 200 A diameter pores of a sol-gel silica glass. The experiments, performed as a function of the hydration level, showed an enhancement of the self-diffusion coefficient when the water content corresponds to one or fewer monolayers. An explanation for this occurrence has been given in terms of a two-phase process involving a fast molecular exchange between the liquid and the vapor phase. Moreover, in partially filled pores, the surface water diffusion coefficient was measured, and was 4 times lower than the diffusion of liquid confined water in saturated spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号