首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
研究了在不同速度的刚性锥头弹丸撞击下固支金属厚靶的侵彻和穿透性能。假定靶板的变形是局部化的,且冲击能量仅通过侵彻过程吸收,同时假定弹体在侵彻过程中表面所受靶体的平均压力是由基于空穴膨胀理论的靶体材料弹塑性变形所引起的静态阻力以及速度效应引起的动阻力两部分组成,认为侵彻过程中靶体对弹体的静阻力要进行自由表面效应修正,而且动阻力是瞬时侵彻速度的函数。获得了锥头弹丸在侵彻和贯穿过程中的弹道极限速度和残余速度的公式。将理论预测与实验结果进行比较,发现两者符合得很好。  相似文献   

2.
研究了弹体斜侵彻混凝土的弹道问题。基于弹靶分离方法,利用考虑自由表面效应的衰减函数构造得到半经验阻力函数,并将靶体对弹体的作用以该阻力函数代替。通过对弹体斜侵彻过程的数值仿真和试验,得出不同工况下,弹体偏转角、加速度随时间的变化情况以及侵彻深度与弹体速度和靶体倾斜角的关系。结果表明,数值仿真结果与试验结果吻合较好,说明考虑自由表面效应的靶体响应力函数方法具有较高的可靠性。  相似文献   

3.
研究了弹体斜侵彻混凝土的弹道问题。基于弹靶分离方法,利用考虑自由表面效应的衰减函数构造得到半经验阻力函数,并将靶体对弹体的作用以该阻力函数代替。通过对弹体斜侵彻过程的数值仿真和试验,得出不同工况下,弹体偏转角、加速度随时间的变化情况以及侵彻深度与弹体速度和靶体倾斜角的关系。结果表明,数值仿真结果与试验结果吻合较好,说明考虑自由表面效应的靶体响应力函数方法具有较高的可靠性。  相似文献   

4.
为了实现侵彻体对多层靶板的高效毁伤,采用数值模拟方法研究了分段式横向效应增强体(PELE)对4层金属靶的侵彻效应,获得了弹体侵彻速度和靶板厚度对弹体终点效应的影响。结果表明,分段PELE弹侵彻4层靶的靶后效果优于普通PELE弹。与金属杆相比,分段PELE弹侵彻多层靶后的弹孔直径更大。弹丸贯穿各层靶板后壳体的径向速度峰值随着靶板厚度的增加而增大,而壳体破碎长度并不随之线性变化。提高弹丸侵彻速度时,弹丸穿过第1层靶板后壳体破碎长度的变化趋势与径向速度峰值的变化相似,穿过第2层和第3层靶板后壳体破碎长度和径向速度峰值在侵彻速度为1.4km/s时达到极大值,随后下降,而穿过第4层靶板后壳体破碎长度和径向速度峰值随着初速度的增加而增大。  相似文献   

5.
为了研究弹体侵彻开坑过程中弹头表面阻力,采用应力波表层损伤理论分析了混凝土开坑区的侵彻特性,并在应力波反射形成层裂的基础上解释了靶面成坑机理,建立了计算开坑区弹头表面阻力的新模型,通过数值仿真和实验方法对新模型进行验证。结果表明:数值模拟和实验与新模型的计算结果吻合较好,开坑过程中弹体表面阻力与速度和弹体头部形状有关。新模型能够较好地描述开坑深度与速度的关系,适用于弹体侵彻混凝土靶的阻力计算,克服了Forrestal半经验法的不足。  相似文献   

6.
利用LS-DYNA3D软件数值计算了弹体侵彻岩石、混凝土和土问题,分析在不同碰撞速度条件下的弹体响应和靶体抗侵彻能力。碰撞速度小于900 m/s时,弹体侵彻岩石的减加速度峰值约是侵彻混凝土的2倍,而侵彻混凝土的减加速度峰值约是侵彻土的6倍。减加速度峰值高则稳态侵彻过程短,弹体能量消耗很快。碰撞速度超过1.5 km/s时,随靶体材料的强度、密度逐渐减小,侵彻深度和孔径逐渐缓慢增加,岩石、混凝土和土3种靶体材料相比,最大侵彻深度增加41%~62%,最大扩孔口径增加16%~25%。  相似文献   

7.
入射速度对长杆弹垂直侵彻行为的影响规律   总被引:1,自引:0,他引:1       下载免费PDF全文
 以长杆弹垂直侵彻半无限厚靶板为研究对象,分析了弹体最大侵彻深度与入射速度的关系,研究了弹体入射速度对侵彻最大深度的影响规律。研究表明:靶板的强度和界面效应使弹体在侵彻过程中存在一个临界速度,当入射速度大于临界速度时,弹体的侵彻才能通过开坑阶段进入准稳定阶段,它是造成当入射速度较小时侵彻深度随入射速度的提高而几乎不变或缓慢增加的主要原因;准稳定侵彻过程中弹体速度和侵彻速度基本不变,并且两者存在线性关系,这种关系只与弹体和靶板的材料性能有关,是造成当入射速度较大时侵彻深度随入射速度的提高呈快速线性增大的主要原因。  相似文献   

8.
厚金属靶在弹丸打击下的侵彻与穿透   总被引:1,自引:0,他引:1       下载免费PDF全文
 给出了预测厚金属靶在不同形状弹头弹丸大速度范围内打击下侵彻与穿透的简单分析方程。在方程的建立过程中,假定变形是局部化的、冲击能量仅由侵彻过程吸收,并进一步假定靶材料对弹丸的平均阻(压)力由两部分组成:一部分基于空穴膨胀理论由于靶材料弹-塑性变形所产生的准静态凝聚阻力;另一部分是考虑了速度效应后的动压力。推导出了预测靶侵彻深度和弹道极限的方程表达式,并与金属靶在不同形状弹头弹丸大速度范围内打击下侵彻与穿透的实验进行了比较。理论预测与实验结果吻合得很好。  相似文献   

9.
由于弹丸对混凝土靶体侵彻机理的未知性及混凝土力学性能的复杂性,因此可将弹丸侵彻混凝土过程看作是一个灰色过程。介绍了弹丸侵彻混凝土靶体侵彻深度的灰色模拟与预测模型GM(1,n)的建立方法和过程,通过GM(1,n)模型可以实现对弹丸侵彻混凝土介质侵彻深度的模拟与预测。通过算例计算表明,此模型对模拟和预测弹丸侵彻混凝土的侵彻深度可行,且计算量较小。  相似文献   

10.
为研究钢筋对混凝土靶侵彻作用的影响,基于混合物理论,建立了钢筋混凝土的等效混合物模型,同时还建立了将钢筋等效为钢板和素混凝土板的有限元模型,并通过弹体贯穿剩余速度、靶体压力场对两种方法进行比较,分析侵彻作用过程。计算结果表明:基于混合物理论的等效钢筋混凝土混合物模型能够较好地反映侵彻时钢筋的作用,既可以满足计算精度,又能够简化建模过程,提高计算效率,是进行侵彻数值分析的有效简化方法;钢筋混凝土板自由表面附近的钢筋分布能够提高靶对弹体的阻力,但其作用效果有限。  相似文献   

11.
 采用HJC混凝土损伤本构模型及LS-DYNA的流固耦合算法,分别对钢筋混凝土靶板在弹丸冲击和爆炸载荷作用下的响应进行了有限元数值模拟,其中模拟参数由实验数据拟合重新获取。将模拟结果与实验结果和经验公式进行对比分析,结果表明:数值模拟再现了弹体贯穿靶板过程中的开坑、隧道及漏斗碎裂区,计算得到的弹体弹道极限及残余速度与实验数据吻合较好;此外,数值模拟也很好地再现了炸药爆炸后冲击波的传播过程以及爆炸载荷作用下混凝土的破坏情况,模拟结果与实验现象具有良好的一致性。  相似文献   

12.
Among the different material surrogates used to study the effect of small calibre projectiles on the human body, ballistic gelatine is one of the most commonly used because of its specific material properties. For many applications, numerical simulations of this material could give an important added value to understand the different phenomena observed during ballistic testing. However, the material response of gelatine is highly non-linear and complex. Recent developments in this field are available in the literature. Experimental and numerical data on the impact of rigid steel spheres in gelatine available in the literature were considered as a basis for the selection of the best model for further work. For this a comparison of two models for Fackler gelatine has been made. The selected model is afterwards exploited for a real threat consisting of two types of ammunitions: 9?mm and .44 Magnum calibre projectiles. A high-speed camera and a pressure sensor were used in order to measure the velocity decay of the projectiles and the pressure at a given location in the gelatine during penetration of the projectile. The observed instability of the 9?mm bullets was also studied. Four numerical models were developed and solved with LS-DYNA and compared with the experimental data. Good agreement was obtained between the models and the experiments validating the selected gelatine model for future use.  相似文献   

13.
 通过低速条件下弹丸对硬土、中硬土和中软土不同土介质侵彻性能的实验研究,得到了弹丸对土介质垂直侵彻的弹道特点和不同弹丸速度对不同性能参数土介质的侵彻深度,拟合得到了不同土介质中侵彻深度随弹丸动压增加呈线性增加的无量纲关系式;基于低速弹丸对不同土介质具有不同侵彻性能的实验研究方法,可有效标定不同土介质抗侵彻性能和弹丸侵彻不同土介质性能;通过实验数据与Young侵彻公式计算结果的比较分析,验证了Young公式在侵彻深度小于弹丸直径3倍时的有效性。  相似文献   

14.
密度梯度薄板超高速撞击特性的实验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
侯明强  龚自正  徐坤博  郑建东  曹燕  牛锦超 《物理学报》2014,63(2):24701-024701
以二级轻气炮作为加载手段,在撞击速度范围为4.0—7.0 km/s内获得了Ti6Al4V/Ly12 Al/聚酰胺纤维密度梯度薄板的穿孔特性、验证板损伤特性和弹道极限特性.与Ly12 Al薄板的相应实验结果的对比显示,在相同撞击速度下,该密度梯度薄板的穿孔直径更大,且随撞击速度的增大而增加;其验证板上的撞击坑尺寸小,且随撞击速度的增大而减小;其弹道极限比Ly12 Al薄板的弹道极限高50%以上.分析认为,超高速撞击下Ti6Al4V/Ly12 Al/聚酰胺纤维密度梯度薄板中高阻抗的Ti6Al4V产生的峰值冲击压力比Ly12 Al薄板的峰值冲击压力高,这增强了对弹丸的破碎能力;而其中的聚酰胺纤维层延长了冲击波在薄板中的传播时间,增大了冲击波的耗散,使撞击过程中转化的不可逆功增多,从而消耗了弹丸更多的动能.使用这种密度梯度材料作为防护屏具有很好的抗撞击能力,在航天器空间碎片防护工程应用中具有很大的潜力.  相似文献   

15.
 防护结构的撞击极限是空间防护领域的重要研究内容。基于对理想弹塑性薄板的分析,得到了双层板结构的撞击极限方程。所得方程适用于球形弹丸超高速正撞击双层板结构的情况,分析时采用了Rayleigh-Ritz法及Tresca屈服准则。为验证方程的有效性,对实验进行了预报分析,并且与已有的经验方程的撞击极限曲线进行了对比。结果发现,方程预测结果的准确率为80%,且所得的撞击极限曲线与已有的经验方程曲线吻合得很好。  相似文献   

16.
 采用电探针测试技术和分幅照相技术测定了按比例缩小的三种弹丸的着靶速度及侵彻过程,获得了弹丸着靶速度及对应的最大侵彻深度数据。通过对实验数据的分析,给出了估算弹丸着靶速度与最大侵彻深度的经验公式,计算结果与本实验和文献[2, 3, 4]的实验数据相符。  相似文献   

17.
超高速撞击Kevlar纤维布填充防护结构研究   总被引:1,自引:0,他引:1  
 利用二级轻气炮,对Kevlar纤维布填充Whipple防护结构进行了超高速撞击实验研究。基于Nextel/Kevlar撞击极限曲线,分析了单层及双层Kevlar纤维布填充防护结构的防护性能以及填充材料、舱壁的损伤情况。实验表明,Kevlar纤维布填充Whipple防护结构在低速区具有优良的防护性能。分层布局可改善Kevlar纤维布填充Whipple防护结构在低速区的防护性能。在低速区,Kevlar纤维丝主要依靠大量的塑性变形及断裂吸收弹丸的动能;在高速区,Kevlar纤维丝存在高温熔化及碳化现象,使弹丸破碎或熔化为更小的碎片或熔球,从而减轻对舱壁的损伤。  相似文献   

18.
超空泡射弹侵彻问题的实质是特殊水下结构受到高速冲击载荷作用下的动态响应。对12.7 mm口径超空泡射弹侵彻典型水下目标壳体的毁伤效果开展研究,基于LS-DYNA有限元分析软件建立水环境中超空泡射弹垂直侵彻曲面靶板的等效模型,探讨射弹侵彻过程中动能侵彻和气泡溃灭对靶板联合毁伤效果,获得了靶板在各阶段的应力变化和结构变形规律。结果表明:侵彻靶板前,射弹着靶速度为200 m/s时的头部表面水介质压力峰值达768 N,靶板表面有明显下凹变形;侵彻靶板时,伴随着射弹动能侵彻和气泡溃灭冲击,水介质造成的影响不足动能侵彻的2%;侵彻靶板后,在靶板正面形成峰值速度为42 m/s的水射流进一步作用于破口;靶板整体弯曲变形,在200~300 m/s范围内,随着射弹着靶速度的增加,靶板弯曲形变量减小;靶板局部发生延性穿孔,射弹在水环境中具有更好的破口效果,射弹速度变化对破口尺寸影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号