首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the producing of a biodegradable poly(l-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsule by emulsion solvent evaporation method was investigated. The effect of PEG segments added to the PLA microcapsules on the degradation, size distribution, and release behavior was studied. According to the results, PLA/PEG copolymer was more hydrophilic than PLA homopolymer, and with lower glass transition temperature. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules, the mean diameters of prepared PLA and PLA/PEG microcapsules were 40 and 57 microm, respectively. And spherical forms were observed by the image analyzer and the scanning electron microscope (SEM). Drug release from microcapsules was affected by the properties of PLA/PEG copolymers determined by UV-vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which explained by increasing hydrophilic groups.  相似文献   

2.
Poly(l-lactide)/poly(butylene succinate) microcapsules containing an aqueous solution of sodium(+)-tartrate dihydrate were prepared by the interfacial precipitation method through solvent evaporation from (w/o)/w emulsion. The effects of poly(vinyl alcohol) used as a protective colloid in the microencapsulation were investigated regarding thermal properties, particle size distributions, surface morphologies, and release behaviors of the biodegradable microcapsules. It was concluded that encapsulation efficiency, surface morphologies, thermal properties, and releasing speed were closely related to the particle size distributions of microcapsules under different conditions of the protective colloid.  相似文献   

3.
The biodegradable poly(butylene succinate)/poly(epsilon-caprolactone) (PBS/PCL) microcapsules containing indomethacin were prepared by emulsion solvent evaporation method. The morphologies, thermal properties, and release behaviors of PBS/PCL microcapsules were investigated. As a result, the microcapsules exhibited porous and spherical form in the presence of gelatin as a surfactant. From the DSC result, the PBS/PCL microcapsules showed the two exothermic peaks meaning the melting points of PCL and PBS. The results of FT-IR and DSC proved that the PBS and PCL were mixed so that the PBS/PCL microcapsules were composed of two wall-forming materials. And the release rate of indomethacin from the microcapsules was decreased with increasing the PCL content. It was noted that an addition of PCL on the PBS led to the decrease of pore size in the PBS/PCL microcapsules.  相似文献   

4.
The biodegradable poly(epsilon-caprolactone) microcapsules (PCL) containing tocopherol (TC) were prepared by emulsion solvent evaporation method, and microcapsules were treated by oxygen plasma to enhance the hydrophilic microcapsules. The morphologies and thermal properties of the microcapsules were determined by SEM and DSC measurements. The microcapsules studied were characterized by surface free energy or work of adhesion through contact angle measurement. As a result, the features of the microcapsules could be adjusted by manufacturing condition, such as surfactant and core ratio. The surface free energy or work of adhesion of the microcapsules was increased with increasing the time of plasma treatment, which could be attributed to the increased hydrophilic groups during oxygen plasma treatment. The release profile of the microcapsules was determined by UV-vis spectroscopy and the microcapsules containing tocopherol showed the rapid release rate, as compared with untreated ones.  相似文献   

5.
Nano-sized TiO(2) or SiO(2)/TiO(2) particles were prepared by hydrolysis and condensation reactions in aqueous media, followed by mixing with poly(AA-co-MMA) latex to form different composites, then blending with poly(ethylene terephthalate), PET. The TGA results of composites indicated that negative charged latexes had greater interaction with TiO(2)/ or SiO(2)/TiO(2) particles through strong electrostatic forces, while cationic latexes incorporated with TiO(2) or SiO(2)/TiO(2) particles by pH induced coagulation, carbonyl group chelation and hydrogen bonding. The soapless latex polymer particles showed lower ability of adsorption to TiO(2) particles due to the decrease of total surface area of these larger particles. If SiO(2)/TiO(2) particles were used instead of TiO(2) particles, unexpected high adsorption result was observed. Morphology results observed by SEM showed that PET blended with positive charged composites was more homogeneous than PET blended with negative charged composites. DSC results also indicated that the T(g) of PET was increased, melting temperatures (T(m) or T(m)(')) were increased, and the temperature range of crystallization was narrowed after blending with the composites. The presence of composites affected the mobility and packing of PET molecular chains therefore changing the thermal properties of PET.  相似文献   

6.
In this work, porous poly(ɛ-caprolactone) (PCL)/Eudragit RS 100 (ERS-100) microcapsules containing tulobuterol base as a model drug were prepared by a solvent evaporation method and the effect of the quaternary ammonium groups of ERS-100 on the release behaviors of the microcapsules was investigated. The microcapsules prepared with PCL alone showed a stable and smooth surface, whereas porous microcapsules were formed with the addition of ERS-100. Drug loading and encapsulation efficiency of the microcapsules were slightly decreased with an increase of ERS-100 content, resulting from an increase in the porosity of the microcapsules. In an acidic release medium, PCL microcapsules showed slow drug release, whereas PCL/ERS-100 microcapsules showed a faster release rate with an increasing ERS-100 content. These behaviors are likely due to an increase in the diffusion rate of the drugs stemming from an increased hydration of the microcapsules, which results from the interaction between the carboxyl group of the release medium and the quaternary ammonium group of ERS-100.  相似文献   

7.
A series of poly(D,L-lactic-co-glycolic acid) (PLGA)/poly(ethyleneglycol) (PEG) di-block copolymers were synthesized by ring-opening polymerization of D,L-lactide and glycolide with different molecular weights of monomethoxy polyethyleneglycol (mPEG) 750, 2000 and 5000 as an initiator. The bulk properties of these co-polymers were characterized by using 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC). Electron spectroscopy for chemical analysis (ESCA) results, in which the blend films with the di-block copolymers showed increasing surface oxygen atomic percentage with increasing PEG chain length, indicate that PEG chain segment in the di-block copolymers is surface oriented and enriched onto the surface of the blend films. The extent of protein adsorption onto the surface of these blend films was studied, using iodine radio-labeled human serum albumin, gamma globulin and human growth hormone. The protein adsorption amount was reduced for the blend films prepared with PLGA/PEG 750 and 2000 di-block copolymers, but increased to a great extent for PLGA/PEG 5000 di-block copolymer. This is due to the increased water uptake capacity of the blend film, which absorbed more protein molecules into a swollen polymer matrix in addition to surface adsorption.  相似文献   

8.
Polyurethane microcapsules were prepared by mini‐emulsion interfacial polymerization for encapsulation of phase‐change material (n‐docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4′‐diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT‐IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4′‐diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 μm, and were selected for the microencapsulation of the n‐docosane. In the second stage, half of the composition of silicone oil was replaced with n‐docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase‐change behavior was evaluated by differential scanning calorimetry (DSC).  相似文献   

9.
Relatively uniform-sized biodegradable poly(lactide) (PLA) microcapsules with various sizes were successfully prepared by combining a glass membrane emulsification technique and water-in-oil-in-water (w1/o/w2) double emulsion-solvent evaporation method. A water phase was used as the internal water phase, a mixture solvent of dichloromethane (DCM) and toluene dissolving PLA and Arlacel 83 was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a glass membrane into the external water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 double emulsion droplets. Then, the solid polymer microcapsules were obtained by simply evaporating solvent. The influence of process parameters on the size distribution of PLA microcapsules was investigated, with an emphasis on the effect of oil-soluble emulsifier. A unique phenomenon was found that a large part of emulsifier could adsorb on the interface of internal water phase and oil phase, which suppressed its adsorption on the surface of glass membrane, and led to the successful preparation of uniform-sized double emulsion. Finally, by optimizing the process parameters, PLA microcapsules with various sizes having coefficient of variation (CV) value under 14.0% were obtained. Recombinant human insulin (rhI), as a model protein, was encapsulated into the microcapsules with difference sizes, and its encapsulation efficiency and cumulative release were investigated. The result suggested that the release behavior could be simply adjusted just by changing precisely the diameters of microcapsule, benefited from the membrane emulsification technique.  相似文献   

10.
The perfluorosulfonic acid (PFSA)/SiO2 composite catalysts were prepared by sol-gel method.Differences concerning pore structure analysis of PFSA/SiO2 catalysts were discussed on the basis of nitrogen adsorption.Their surface area and pore size distributions were evaluated by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods,respectively.The nitrogen adsorption-desorption isotherms associated with adsorption hysteresis of PFSA/SiO2 catalysts were analyzed in detail.The adsorption isother...  相似文献   

11.
Polyelectrolyte microcapsules with avidin-poly(styrene sulfonate) (PSS) membrane were prepared by a layer-by-layer deposition technique. The uptake and release of biotin-labeled fluorescein (b-FITC) as well as immobilization of biotin-labeled glucose oxidase (b-GOx) to the microcapsule were studied. The polyelectrolyte microcapsules were prepared by coating the surface of calcium carbonate (CaCO(3)) microparticles with an avidin/PSS multilayer membrane, followed by dissolution of CaCO(3) core in an ethylenediaminetetraacetic acid solution. Inner and outer poly(allylamine)/PSS films were required to isolate the microcapsules, whereas microcapsules could not be formed without the support. The uptake of b-FITC into the microcapsule was highly enhanced through a strong binding of b-FITC to avidin as compared with the uptake of biotin-free FITC. Release of b-FITC from the microcapsule was accelerated upon addition of biotin due to a competitive binding of the added biotin to the binding site of avidin. Similarly, the surface of microcapsule was modified with b-GOx with retaining its catalytic activity.  相似文献   

12.
Effects of hydrochloric acid and sodium hydroxide treatments of activated carbons (ACs) on chromium(VI) reduction were studied. The surface properties were determined by pH, acid-base values, FT-IR, and X-ray photoelectron spectrometer (XPS). And the porous structure of the activated carbons was characterized by adsorption of N(2)/77 K. The Cr(VI) adsorption experiments were carried out to analyze the influence of porous texture and surface properties changed by the chemical surface treatments of ACs on adsorption rate with carbon-solution contact time. From the experimental results, it was observed that the extent of adsorption and reduction processes depends on both microporous structure and functional groups. And the adsorption of Cr(VI) ion was more effective in the case of acidic treatment on activated carbons, resulting from the increases of acid value (or acidic functional group) of activated carbon surfaces. However, basic treatment on activated carbons was not significantly effective on the adsorption of Cr(VI) ion, probably due to the effects of the decrease of specific surface area and basic Cr(VI) in nature.  相似文献   

13.
The biodegradable poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEO) microcapsules and the analyzing of form and features for the manufacturing conditions were investigated in a prospective drug delivery systems (DDS) through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate on the diameter and form of the microcapsules were examined using image analyzer (IA) and scanning electron microscope (SEM). The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release rate of the microcapsules was characterized by UV-vis spectroscopy. As a result, the microcapsules were made in spherical forms with a mean particle size of 170 nm approximately 68 microm. And the work of adhesion between water and PCL/PEO was increased with increasing the PEO content, which is due to higher hydrophilicity of PEO. The drug release rate of the microcapsules was significantly increased as the PEO content increased, which could be attributed to the increasing of the hydrophilic groups or the degree of adhesion at the interfaces.  相似文献   

14.
Composite microcapsules of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes were prepared and the electromagnetic interference shielding behavior was evaluated for the composite microcapsules. The dispersion and adhesion of multi-walled carbon nanotubes in microcapsules were improved by the surface modification through direct oxyfluorination which introduced polar groups on the multi-walled carbon nanotubes. The composite microcapsules containing the oxyfluorinated multi-walled carbon nanotubes showed significant increases in permittivity, permeability, and electromagnetic interference shielding efficiency. The electromagnetic interference shielding efficiency of composite microcapsule increased up to 51 dB mainly base on the absorption mechanism.  相似文献   

15.
Alginate/poly(acryloxyethyl-trimethylammonium chloride-co-2-hydroxyethyl methacrylate) [poly(Q-co-H)] microcapsules were prepared by ionic gelation (Ca2+) for adhesion and growth of goat mammary epithelial cell culture. In the procedure of microcapsule formation, alginate was first pumped into a CaCl2 solution and then transferred into a poly(Q-co-H). The poly(Q-co-H) was prepared by free-radical polymerization in aqueous solution at 60 °C using potassium persulfate as initiator. The microcapsules obtained were sterilized using gamma radiation according to International Standards Organization (ISO)/TR 13409. Scanning electron microscopy studies indicated the high porosity and rough surface marked by large wrinkles of the microcapsule surface, and the diameter of the microcapsule was approximately 497 μm, and diameters ranking 480–515 μm were obtained. Optical michrography shows the epithelial morphology acquired by goat epithelial mammary cells (GMEC) on poly(Q-co-H)/NaAlg microcapsule surface after 8 h of culture.  相似文献   

16.
In a previous work [J. Microencapsulation, in press], polyamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) with a mean diameter of 210 μm were prepared using an original two-step polymerization process combining interfacial polycondensation and radical polymerization in a water in oil inverse emulsion system. Extractions of many divalent cations were examined. In this work, we proposed to synthesise by the same process, smaller microcapsules with a mean diameter of 10 μm (PAA-μCAPS). Reference polyamide microcapsules, i.e. without ligand were also synthesized (μCAPS) and (CAPS) [J. Microencapsulation, in press]. Microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts, microcapsule water content was determined by thermogravimetric experiments. Specific surface area and total volume of the pore of microcapsules were determined by BET method based on N2 adsorption/desorption. The comparison of the extractabilities and the stripping of Cu(II) into the various kind of microcapsules were examined.  相似文献   

17.
The chemical modification of the alginate/chitosan/alginate (ACA) hydrogel microcapsule with methoxy poly(ethylene glycol) (MPEG) was investigated to reduce nonspecific protein adsorption and improve biocompatibility in vivo. The graft copolymer chitosan-g-MPEG (CS-g-MPEG) was synthesized, and then alginate/chitosan/alginate/CS-g-MPEG (ACAC(PEG)) multilayer hydrogel microcapsules were fabricated by the layer-by-layer (LBL) polyelectrolyte self-assembly method. A quantitative study of the modification was carried out by the gel permeation chromatography (GPC) technique, and protein adsorption on the modified microcapsules was also investigated. The results showed that the apparent graft density of the MPEG side chain on the microcapsules decreased with increases in the degree of substitution (DS) and the MPEG chain length. During the binding process, the apparent graft density of CS-g-MPEG showed rapid growth-plateau-rapid growth behavior. CS-g-MPEG was not only bound to the surface but also penetrated a certain depth into the microcapsule membranes. The copolymers that penetrated the microcapsules made a smaller contribution to protein repulsion than did the copolymers on the surfaces of the microcapsules. The protein repulsion ability decreased with the increase in DS from 7 to 29% with the same chain length of MPEG 2K. CS-g-MPEG with MPEG 2K was more effective at protein repulsion than CS-g-MPEG with MPEG 550, having a similar DS below 20%. In this study, the microcapsules modified with CS-g-MPEG2K-DS7% had the lowest IgG adsorption of 3.0 ± 0.6 μg/cm(2), a reduction of 61% compared to that on the chitosan surface.  相似文献   

18.
Microporous structure and drug release kinetics of polymeric nanoparticles   总被引:1,自引:0,他引:1  
The aim of the present study was to characterize pegylated nanoparticles (NPs) for their microporosity and study the effect of microporosity on drug release kinetics. Blank and drug-loaded NPs were prepared from three different pegylated polymers, namely, poly(ethylene glycol)1%-graft-poly(D,L)-lactide, poly(ethylene glycol)5%-graft-poly(D,L)-lactide, and the multiblock copolymer (poly(D,L)-lactide-block-poly(ethylene glycol)-block-poly(D,L)-lactide)n. These NPs were characterized for their microporosity using nitrogen adsorption isotherms. NPs of the multiblock copolymer showed the least microporosity and Brunauer-Emmett-Teller (BET) surface area, and that of PEG1%-g-PLA showed the maximum. Based on these results, the structural organization of poly(D,L)-lactide (PLA) and poly(ethylene glycol) (PEG) chains inside the NPs was proposed and was validated with differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS) surface analysis. An in vitro drug release study revealed that PEG1%-g-PLA NPs exhibited slower release despite their higher surface area and microporosity. This was attributed to the presence of increased microporosity forming tortuous internal structures, thereby hindering drug diffusion from the matrix. Thus, it was concluded that the microporous structure of NPs, which is affected by the molecular architecture of polymers, determines the release rate of the encapsulated drug.  相似文献   

19.
SiO(2)/graphene composite was prepared through a simple two-step reaction, including the preparation of SiO(2)/graphene oxide and the reduction of graphene oxide (GO). The composite was characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray photoelectron spectroscopy, and what is more, the adsorption behavior of as-synthesized SiO(2)/graphene composite was investigated. It was interestingly found that the composite shows high efficiency and high selectivity toward Pb(II) ion. The maximum adsorption capacity of SiO(2)/graphene composite for Pb(II) ion was found to be 113.6 mg g(-1), which was much higher than that of bare SiO(2) nanoparticles. The results indicated that SiO(2)/graphene composite with high adsorption efficiency and fast adsorption equilibrium can be used as a practical adsorbent for Pb(II) ion.  相似文献   

20.
Nanoparticles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as blood persistent drug delivery system with potential applications for intravenous drug administration. Considering the importance of protein interactions with injected colloidal dug carriers with regard to their in vivo fate, we analysed plasma protein adsorption onto biodegradable PEG-coated poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(-caprolactone) (PCL) nanoparticles employing two-dimensional gel electrophoresis (2-D PAGE). A series of corona/core nanoparticles of sizes 160–270 nm were prepared from diblock PEG-PLA, PEG-PLGA and PEG-PCL and from PEG-PLA:PLA blends. The PEG Mw was varied from 2000–20 000 g/mole and the particles were prepared using different PEG contents. It was thus possible to study the influence of the PEG corona thickness and density, as well as the influence of the nature of the core (PLA, PLGA or PCL), on the competitive plasma protein adsorption, zeta potential and particle uptake by polymorphonuclear (PMN) cells. 2-D PAGE studies showed that plasma protein adsorption on PEG-coated PLA nanospheres strongly depends on the PEG molecular weight (Mw) (i.e. PEG chain length at the particle surface) as well as on the PEG content in the particles (i.e. PEG chain density at the surface of the particles). Whatever the thickness or the density of the corona, the qualitative composition of the plasma protein adsorption patterns was very similar, showing that adsorption was governed by interaction with a PLA surface protected more or less by PEG chains. The main spots on the gels were albumin, fibrinogen, IgG, Ig light chains, and the apolipoproteins apoA-I and apoE. For particles made of PEG-PLA45K with different PEG Mw, a maximal reduction in protein adsorption was found for a PEG Mw of 5000 g/mole. For nanospheres differing in their PEG content from 0.5 to 20 wt %, a PEG content between 2 and 5 wt % was determined as a threshold value for optimal protein resistance. When increasing the PEG content in the nanoparticles above 5 wt % no further reduction in protein adsorption was achieved. Phagocytosis by PMN studied using chemiluminescence and zeta potential data agreed well with these findings: the same PEG surface density threshold was found to ensure simultaneously efficient steric stabilization and to avoid the uptake by PMN cells. Supposing all the PEG chains migrate to the surface, this would correspond to a distance of about 1.5 nm between two terminally attached PEG chains in the covering ‘brush’. Particles from PEG5K-PLA45K, PEG5K-PLGA45K and PEG5K-PCL45K copolymers enabled to study the influence of the core on plasma protein adsorption, all other parameters (corona thickness and density) being kept constant. Adsorption patterns were in good qualitative agreement with each other. Only a few protein species were exclusively present just on one type of nanoparticle. However, the extent of proteins adsorbed differed in a large extent from one particle to another. In vivo studies could help elucidating the role of the type and amount of proteins adsorbed on the fate of the nanoparticles after intraveinous administration, as a function of the nature of their core. These results could be useful in the design of long circulating intravenously injectable biodegradable drug carriers endowed with protein resistant properties and low phagocytic uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号