首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Dyson-Schwinger approach, a method for obtaining the small current quark mass effect on the dressed gluon and quark propagator is developed. A comparison with the results of the previous approach is given.  相似文献   

2.
The pion and tensor vacuum susceptibilities are calculated in theframework of the renormalizable Dyson-Schwinger equations. A comparisonwith the results of other nonperturbative QCD approaches is given.  相似文献   

3.
We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing the following aspects: confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small- to large-Q2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.  相似文献   

4.
A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson-Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.  相似文献   

5.
An overview of the theory and phenomenology of hadrons and QCD is provided from a Dyson-Schwinger equation viewpoint. Following a discussion of the definition and realization of light-quark confinement, the nonperturbative nature of the running mass in QCD and inferences from the gap equation relating to the radius of convergence for expansions of observables in the current-quark mass are described. Some exact results for pseudoscalar mesons are also highlighted, with details relating to the UA(1) problem, and calculated masses of the lightest J=0,1 states are discussed. Studies of nucleon properties are recapitulated upon and illustrated: through a comparison of the ln-weighted ratios of Pauli and Dirac form factors for the neutron and proton; and a perspective on the contribution of quark orbital angular momentum to the spin of a nucleon at rest. Comments on prospects for the future of the study of quarks in hadrons and nuclei round out the contribution.  相似文献   

6.
A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.  相似文献   

7.
Based on the global color symmetry mode/ (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one shouM use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.  相似文献   

8.
Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.  相似文献   

9.
Two basic motivations for an upgraded JLab facility are the needs: to determine the essential nature of light-quark confinement and dynamical chiral symmetry breaking (DCSB); and to understand nucleon structure and spectroscopy in terms of QCD's elementary degrees of freedom. During the next ten years a programme of experiment and theory will be conducted that can address these questions. We present a Dyson- Schwinger equation perspective on this effort with numerous illustrations, amongst them: an interpretation of string~breaking; a symmetry-preserving truncation for mesons; the nucleon's strangeness σ-term; and the neutron's charge distribution.  相似文献   

10.
Two basic motivations for an upgraded JLab facility are the needs: to determine the essential nature of light-quark confinement and dynamical chiral symmetry breaking (DCSB); and to understand nucleon structure and spectroscopy in terms of QCD's elementary degrees of freedom. During the next ten years a programme of experiment and theory will be conducted that can address these questions. We present a Dyson-Schwinger equation perspective on this effort with numerous illustrations, amongst them: an interpretation of string-breaking; a symmetry-preserving truncation for mesons; the nucleon's strangeness σ-term; and the neutron's charge distribution.  相似文献   

11.
It is shown how to apply the Maximum Entropy Method (MEM) to numerical Dyson-Schwinger studies for the extraction of spectral functions of correlators from their corresponding Euclidean propagators. Differences to the application in lattice QCD are emphasized and, as an example, the spectral functions of massless quarks in cold and dense matter are presented.  相似文献   

12.
We elucidate constraints imposed by confinement and dynamical chiral symmetry breaking on the infrared behaviour of the dressed-quark and -gluon propagators, and dressed-quark-gluon vertex. In covariant gauges the dressing of the gluon propagator is completely specified by , where Π(k2) is the vacuum polarisation. In the absence of particle-like singularities in the dressed-quark-gluon vertex, extant proposals for the dressed-gluon propagator that manifest and neither confine quarks nor break chiral symmetry dynamically. This class includes all existing estimates of via numerical simulations.  相似文献   

13.
Based on the Dyson-Schwinger equations of QCD in the rainbow approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates <0|q(0)q(0)|0> = -(0.255 GeV)a for u, d quarks, and <0|s s|0> = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.  相似文献   

14.
Based on the study of the linear response of the fermion propagator to the presence of an external scalar field, a new method for calculating the staggered spin susceptibility in QED3 is presented, in which the influence of the full vertex function is included. The numerical values of the staggered spin susceptibility are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach. A comparison between the result calculated using the full vertex and that using the bare vertex is given.  相似文献   

15.
.A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.  相似文献   

16.
A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.  相似文献   

17.
We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, T<Tc, in the vicinity of the chiral transition temperature this leads to a characteristic dependence of the chiral condensate on the square root of the light quark mass (ml), which is expected for 3-dimensional models with broken O(N) symmetry. As a consequence the chiral susceptibility shows a strong quark mass dependence for all temperatures below T<Tc and diverges like in the chiral limit.  相似文献   

18.
Based on the Dyson-Schwinger equations of quark propagator in rainbow truncation with an effective gluon propagator, the ten unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone bosons are predicted. The predicted values of Li with i= 1, 2,..., 10 are in a reasonable agreement with empirical values used widely in literature, and the values predicted by many other theoretical models with QCD characteristics.  相似文献   

19.
Based on the Dyson-Schwinger equations of quark propagator in rainbow truncation with an effective gluon propagator, the ten unknown Gasser-Leutwyler coefficients of the chiral Lagrangian for pseudoscalar Goldstone bosons are predicted. The predicted values of Li with i=1,2,…,10 are in a reasonable agreement with empirical values used widely in literature, and the values predicted by many other theoretical models with QCD characteristics.  相似文献   

20.
利用三维量子电动力学理论中的Dyson-Schwinger方程方法, 研究了零温情况下平面铜氧化合物超导体的反铁磁相和d波超导相之间的相变. 通过在朗道规范下近似解析求解和数值求解完全耦合的Dyson-Schwinger方程、并将所得结果与1/N展开方法的结果相比较, 发现在半填充准费密子味道数约小于等于4的情况下, 通过手征对称性自发破缺, d波超导相可以演化到反铁磁相, 并且反铁磁相有可能与d波超导相共存. 通过进一步比较不同相的压强, 还说明反铁磁与d波超导共存相为稳定相, 从而反铁磁相确实可以与d波超导相共存.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号