首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates a nonlinear inertance mechanism (NIM) for vibration mitigation and evaluates the performance of nonlinear vibration isolators employing such mechanism. The NIM comprises a pair of oblique inerters with one common hinged terminal and the other terminals fixed. The addition of the NIM to a linear spring-damper isolator and to nonlinear quasi-zero-stiffness (QZS) isolators is considered. The harmonic balance method is used to derive the steady-state frequency response relationship and force transmissibility of the isolators subjected to harmonic force excitations. Different performance indices associated with the dynamic displacement response and force transmissibility are employed to evaluate the performance of the resulting isolators. It is found that the frequency response curve of the inerter-based nonlinear isolation system with the NIM and a linear stiffness bends towards the low-frequency range, similar to the characteristics of the Duffing oscillator with softening stiffness. It is shown that the addition of NIM to a QZS isolator enhances vibration isolation performance by providing a wider frequency band of low amplitude response and force transmissibility. These findings provide a better understanding of the functionality of the NIM and assist in better designs of nonlinear passive vibration mitigation systems with inerters.  相似文献   

2.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

3.
In the present study, Harmonic Balance Method (HBM) is applied to investigate the performance of passive vibration isolators with cubic nonlinear damping. The results reveal that introducing either cubic nonlinear damping or linear damping could significantly reduce both the displacement transmissibility and the force transmissibility of the isolators over the resonance region. However, at the non-resonance region where frequency is lower than the resonant frequency, both the linear damping and the cubic nonlinear damping have almost no effect on the isolators. At the non-resonance region with higher frequency, increasing the linear damping has almost no effects on the displacement transmissibility but could raise the force transmissibility. In addition, the influence of the cubic nonlinear damping on the isolators is dependent on the type of the disturbing force. If the strength of the disturbing force is constant and independent of the excitation frequency, then the effect of cubic nonlinear damping on both the force and displacement transmissibility would be negligible. But, when the strength of the disturbing force is dependent of the excitation frequency, increasing the cubic nonlinear damping could slightly reduce the relative displacement transmissibility and increase the absolute displacement transmissibility but could significantly increase the force transmissibility. These conclusions are of significant importance in the analysis and design of nonlinear passive vibration isolators.  相似文献   

4.
In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.  相似文献   

5.
High-static–low-dynamic-stiffness (HSLDS) vibration isolators seek to widen the frequency range of isolation by decreasing the dynamic stiffness so as to reduce the natural frequency, while maintaining the same static displacement as equivalent linear isolators. However, in many cases especially under light damping or large excitations, the peak transmissibility is very large and the hardening nonlinearity causes the transmissibility curve to bend to the right seriously or in other words causes the jump phenomenon, resulting in a greatly reduced isolation region. In this paper, an auxiliary system is added to the HSLDS isolator to overcome these disadvantages, with the static displacement of the isolation object remaining unchanged. Coefficient-varying harmonic balance method is proposed in this paper to find the dynamic response and most importantly analyze the stability of the steady-state response. The isolation performance of the HSLDS-AS isolator, which is evaluated by displacement transmissibility, is compared with that of the equivalent HSLDS isolator. The effects of system parameters on the isolation performance are investigated. It is shown that the auxiliary system can lower the peak transmissibility and eliminate the jump phenomenon, resulting in a wide isolation region, and the HSLDS-AS isolator has strong designability with many parameters tunable.  相似文献   

6.
针对弹性多孔金属橡胶非线性迟滞特性力学行为,将迟滞恢复力-位移曲线分解为非线性单值曲线和椭圆,并将等效阻尼理论用于动态力学性能参数识别,从而建立了一种新型的适用于黏弹性阻尼材料的宏观唯象力学模型。采用不同相对密度的环形金属橡胶进行动态实验测试,以验证理论模型的准确性,结果表明该模型可将具有非线性特性的金属橡胶系统进行降阶处理,提高金属橡胶力学模型的预测效率,并能很好地描述金属橡胶的迟滞力学行为。另外,研究了在不同激励频率条件下金属橡胶的阻尼耗能特性。实验结果表明:在高频加载的条件下,黏性阻尼系数对动态加载频率不敏感,阻尼耗能与加载幅值之间呈线性正相关。基于等效阻尼理论的弹性迟滞力学模型具有一定的普适性,可进一步推广应用于类似弹性多孔材料的力学性能表征,为其工程应用提供理论基础。  相似文献   

7.
In the present study, the concept of the output frequency response function is applied to theoretically investigate the force transmissibility of multi-degree of freedom (MDOF) structures with a nonlinear anti-symmetric viscous damping. The results reveal that an anti-symmetric nonlinear viscous damping can significantly reduce the transmissibility over all resonance regions for MDOF structures while it has almost no effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to overcome the dilemma in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant region but increases the transmissibility over non-resonant regions.  相似文献   

8.
基于动力吸振器原理,在单自由度准零刚度隔振器基础上耦合可调频动力吸振器构成两自由度隔振系统。首先,对动力吸振器工作原理进行理论分析并提出其力学模型;其次,通过静力学分析,推导出系统满足零刚度条件时,各参数间的关系并分析其对系统刚度特性的影响;然后,建立两自由度隔振系统非线性动力学方程,利用谐波平衡法进行幅频响应解析分析,得到力传递率表达式;最后,数值分析动力吸振器阻尼、刚度、质量、激励力幅值和弹簧片有效长度对力传递率的影响规律,并与单自由度准零刚度隔振系统及两自由度线性隔振系统对比分析。结果表明:通过选择适当的动力吸振器参数不仅可以减小系统的起始隔振频率,增宽隔振频带,且还能加快系统力传递率在特定频段内的衰减速率,改善系统的低频隔振性能,实现激励频率的可适应性。  相似文献   

9.
《Comptes Rendus Mecanique》2017,345(6):386-398
Vibrations are classified among the major problems for engineering structures. Anti-vibration isolators are used to absorb vibration energy and minimise transmitted force which can cause damage. The isolator is modelled as a parallel combination of stiffness and damping elements. The main purpose of the model is to enable designers to predict the dynamic response of systems under different structural excitations and boundary conditions. A nonlinear identification method, discussed in this paper, aims to provide a tool for engineers to extract information about the nonlinear dynamic behaviour using measured data from experiments. The proposed method is demonstrated and validated with numerical simulations. Thus, this technique is applied to determine the nonlinear parameters of a commercial metal mesh isolator. Nonlinear stiffness and nonlinear damping can decrease with the increase in the amplitude of the base excitation. The softening behaviour of the mesh isolator is clearly visible.  相似文献   

10.
To study the coupling vibration of nonlinear isolators and flexible bodies, test rigs of two flexible beams connected by wire mesh isolators are constructed and investigated both experimentally and analytically. A five-parameter polynomial model of wire mesh isolators is derived by identifying parameters in the frequency domain with the sine-sweep test. For obtaining the parameters that are valid in a wide range of frequency, a numerically assisted identification method is developed. With this model, the vibration of two flexible beams connected by wire mesh isolators is studied. The frequency response is obtained analytically by employing the Green’s function method and harmonic balance method. Sine-sweep test results with three test rigs show good coherence with the corresponding numerical results. With obtained experimental results and numerical results, effect of connection parameters is studied in detail. It is found that traditional design rules for isolators are no longer effective and the coupling vibration must be investigated in the design phase. Another phenomenon is that the damping has a function of weakening the effect of nonlinear stiffness. Nonlinear stiffness and nonlinear damping can decrease the transmissibility along with the increase of the excitation level.  相似文献   

11.
By a special layout of the damper in a vibration isolation system, the velocity-nth power damping of the damper can be transformed into the velocity-displacement dependent damping in the moving direction due to geometric nonlinearity. This study is mainly concerned with the mechanism of this geometric nonlinear damping and tries to find some guidelines for designing isolators with high performance, regardless of the isolator is passive or active. The model used in this study is an unconstrained two-degree-of-freedom isolation system, which is suitable for investigating vibration isolation in space vehicles. The motion equation is solved by the averaging method to obtain the amplitude–frequency equation. The influence of damping coefficients on the force transmissibility is analyzed. Results show that this kind of damping has some advantages in improving isolation performance at both the resonance and higher frequencies. Meanwhile, it can also degrade the isolation performance if unreasonable parameters are chosen.  相似文献   

12.
A geometric nonlinear damping is proposed and applied to a quasi-zero stiffness (QZS) vibration isolator with the purpose of improving the performance of low-frequency vibration isolation. The force, stiffness and damping characteristics of the system are presented first. The steady-state solutions of the QZS system are obtained based on the averaging method for both force and base excitations and further verified by numerical simulation. The force and displacement transmissibility of the QZS vibration isolator are then analysed. The results indicate that increasing the nonlinear damping can effectively suppress the force transmissibility in resonant region with the isolation performance in higher frequencies unaffected. In addition, the application of the nonlinear damping in the QZS vibration isolator can essentially eliminate the unbounded response for the base excitation. Finally, the equivalent damping ratio is defined and discussed from the viewpoint of vibration control.  相似文献   

13.
基于多自由度系统中的反共振特性,分别在传统线性隔振系统的上、下两层引入非线性倾斜弹簧负刚度机构,构成两自由度准零刚度隔振器。通过静态特性分析,推导出系统满足零刚度条件时,各参数之间的关系,分析了力学参数及结构参数对系统刚度特性的影响。建立两自由度准零刚度隔振系统的非线性动力学方程,利用平均法求解,推导出力传递率表达式,结合数值分析方法,探讨系统在不同的上、下层隔振器阻尼比、竖直刚度比及质量比情况下的力传递率特性,并与单自由度准零刚度隔振系统及线性斜弹簧两自由度准零刚度隔振系统进行对比研究。结果表明:当结构参数 (即:倾斜弹簧处于静平衡位置的长度与倾斜弹簧原长的比值)较小且倾斜弹簧为软化弹簧时,可在平衡位置附近获得较小的系统刚度及较大的低刚度区间;通过选择适当的上、下层隔振器阻尼比、竖直刚度比与质量比,可减小系统的起始隔振频率,增宽隔振频带,加快系统力传递率在特定频段内的衰减速率,改善系统的低频隔振性能。  相似文献   

14.
Sjöberg  Mattias  Kari  Leif 《Nonlinear dynamics》2003,33(3):323-336
In presenting a nonlinear dynamic model of a rubber vibrationisolator, the quasistatic and dynamic motion influences on theforce response are investigated within the time and frequencydomain. It is found that the dynamic stiffness at the frequency ofa harmonic displacement excitation, superimposed upon the longterm isolator response, is strongly dependent on staticprecompression, dynamic amplitude and frequency. The problems ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, modelling theelastic force response by a nonlinear, shape factor basedapproach, displaying results that agree with those of aneo-Hookean hyperelastic isolator at a long term precompression.The viscoelastic force is modeled by a fractional derivativeelement, while the friction force governs from a generalizedfriction element displaying a smoothed Coulomb force. A harmonicdisplacement excitation is shown to result in a force responsecontaining the excitation frequency and its every otherhigher-order harmonic, while using a linearized elastic forceresponse model, whereas all higher-order harmonics are present forthe fully nonlinear case. It is furthermore found that the dynamicstiffness magnitude increases with static precompression andfrequency, while decreasing with dynamic excitationamplitude – eventually increasing at the highest amplitudes due tononlinear elastic effects – with its loss angle displaying amaximum at an intermediate amplitude. Finally, the dynamicstiffness at a static precompression, using a linearized elasticforce response model, is shown to agree with the fully nonlinearmodel except at the highest dynamic amplitudes.  相似文献   

15.
几何非线性摩擦阻尼隔振系统动力学行为研究   总被引:6,自引:5,他引:1  
非线性隔振系统由于具有较线性系统更优的隔振性能,因此在工程中应用广泛.本文通过配置与被隔振对象的运动方向相垂直的库伦摩擦阻尼器,构建了几何非线性摩擦阻尼模型.由于引入了几何非线性,因此其摩擦力与位移正相关,这与传统与位移无关摩擦力模型有显著不同.首先,建立了具有几何非线性摩擦阻尼的数学模型以及隔振系统的受迫振动方程;然后,使用谐波平衡法求解了动力学方程,并使用数值仿真方法验证了谐波平衡法求解的准确性;最后,研究了几何非线性摩擦阻尼隔振器的绝对位移传递率和相对位移传递率.研究结果表明,在库伦摩擦阻尼选择适当,非线性摩擦阻尼系统可以在保持高频振动衰减效果的前提下,显著降低系统共振峰,其性能优于传统的恒定摩擦阻尼隔振模型.同时,几何非线性摩擦阻尼系统能够避免传统摩擦阻尼系统中的“锁定”现象,从传递率角度来说,不利于共振峰控制;但从激励环境改变引发隔振系统失效的角度来看,几何非线性摩擦阻尼系统可以拓宽系统对激励幅值的适应范围,避免隔振系统失效.本文的研究结果对此类隔振系统的设计和摩擦阻尼参数的选择具有通用的指导意义.   相似文献   

16.
The Haringx theory is usually employed to describe the mechanical behavior of rubber bearings subjected to a compressive axial load and a lateral shear deformation, but it does not consider the damping effect. In order to study the behavior of isolation bearings which possess an energy-dissipation capacity, the explicit formulas for the horizontal stiffness of viscoelastic columns and the corresponded height reduction are derived by the method of variable separation. These explicit formulas are then applied to develop an identification procedure to find the shear modulus and loss factor of the rubber using the cyclic shear tests of isolation bearings. Through this identification procedure, the empirical formulas for the shear modulus and the loss factor of rubber are established as functions of the strain amplitude and the excitation frequency.  相似文献   

17.
In this paper, the large amplitude forced vibrations of thin rectangular plates made of different types of rubbers are investigated both experimentally and theoretically. The excitation is provided by a concentrated transversal harmonic load. Clamped boundary conditions at the edges are considered, while rotary inertia, geometric imperfections and shear deformation are neglected since they are negligible for the studied cases. The von Kármán nonlinear strain-displacement relationships are used in the theoretical study; the viscoelastic behaviour of the material is modelled using the Kelvin-Voigt model, which introduces nonlinear damping. An equivalent viscous damping model has also been created for comparison. In-plane pre-loads applied during the assembly of the plate to the frame are taken into account. In the experimental study, two rubber plates with different material and thicknesses have been considered; a silicone plate and a neoprene plate. The plates have been fixed to a heavy rectangular metal frame with an initial stretching. The large amplitude vibrations of the plates in the spectral neighbourhood of the first resonance have been measured at various harmonic force levels. A laser Doppler vibrometer has been used to measure the plate response. Maximum vibration amplitude larger than three times the thickness of the plate has been achieved, corresponding to a hardening type nonlinear response. Experimental frequency-response curves have been very satisfactorily compared to numerical results. Results show that the identified retardation time increases when the excitation level is increased, similar to the equivalent viscous damping but to a lesser extent due to its nonlinear nature. The nonlinearity introduced by the Kelvin-Voigt viscoelasticity model is found to be not sufficient to capture the dissipation present in the rubber plates during large amplitude vibrations.  相似文献   

18.
In this paper, a nonlinear dynamic model of a quarter vehicle with nonlinear spring and damping is established. The dynamic characteristics of the vehicle system with external periodic excitation are theoretically investigated by the incremental harmonic balance method and Newmark method, and the accuracy of the incremental harmonic balance method is verified by comparing with the result of Newmark method. The influences of the damping coefficient, excitation amplitude and excitation frequency on the dynamic responses are analyzed. The results show that the vibration behaviors of the vehicle system can be control by adjusting appropriately system parameters with the damping coefficient, excitation amplitude and excitation frequency. The multi-valued properties, spur-harmonic response and hardening type nonlinear behavior are revealed in the presented amplitude-frequency curves. With the changing parameters, the transformation of chaotic motion, quasi-periodic motion and periodic motion is also observed. The conclusions can provide some available evidences for the design and improvement of the vehicle system.  相似文献   

19.
范舒铜  申永军 《力学学报》2022,54(9):2567-2576
黏弹性材料作为一种良好的减振材料,广泛应用于机械、航空和土木等领域.本文用黏弹性Maxwell器件代替传统非线性能量阱中的阻尼元件,提出一种新型的黏弹性非线性能量阱,并对该模型在简谐激励下的减振性能进行分析.首先,根据牛顿第二定律建立系统的动力学方程,采用谐波平衡法求解系统的幅频响应曲线,并利用MATLAB中的Runge-Kutta数值方法验证解析解的正确性,结果吻合良好.然后,分析黏弹性非线性能量阱的减振性能和参数的影响.最后,分析了不同质量比下非线性刚度比和阻尼比同时变化时减振效果的变化趋势,并讨论了黏弹性非线性能量阱的最佳取值范围.研究结果表明:主系统的最大振幅随着非线性刚度的增加先减小后增大;当参数选取恰当时,黏弹性非线性能量阱比传统非线性能量阱的减振效果更优;另外,随着质量比的增加,主系统最大振幅的最小值出现先减小后趋于不变的现象,且非线性刚度比和阻尼比的最佳取值范围有所增大.以上结论对黏弹性非线性能量阱的实际应用提供了一定的理论依据.  相似文献   

20.
The dynamic response of a high-static-low-dynamic stiffness (HSLDS) isolator formed by parallelly connecting a negative stiffness corrector which uses compressed Euler beams to a linear isolator is investigated in this study. Considering stiffness and load imperfections, the resonance frequency and response of the proposed isolator are obtained by employing harmonic balance method. The HSLDS isolator with quasi-zero stiffness characteristics can offer the lowest resonance frequency provided that there is only stiffness or load imperfection. If load imperfection always exists, there is no need to make the stiffness to zero since it cannot provide the lowest resonance frequency any longer. The reason for this unusual phenomenon is given. The dynamic response will exhibit softening, hardening, and softening-to-hardening characteristics, depending on the combined effect of load imperfection, stiffness imperfection, and excitation amplitude. In general, load imperfection makes the response exhibit softening characteristic and increasing stiffness imperfection will weak this effect. Increasing the excitation level will make the isolator undergo complex switch between different stiffness characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号