首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdifferential thermal analysis (μ-DTA), X-ray diffraction (XRD) and infrared (IR) spectroscopy were used for the first time to investigate the liquidus and solidus relations in the KPO3–Y(PO3)3 system. The only compound observed within the system was KY(PO3)4 melting incongruently at 1033 K. An eutectic appears at 13.5 mol% Y(PO3)3 at 935 K, the peritectic occurs at 1033 K and the phase transition for potassium polyphosphate KPO3 was observed at 725 K. Three monoclinic allotropic phases of the single crystals were obtained. KY(PO3)4 polyphosphate has the P21 space group with lattice parameters: a=7.183(4) Å, b=8.351(6) Å, c=7.983(3) Å, β=91.75(3)° and Z=2 is isostructural with KNd(PO3)4. The second allotropic form of KY(PO3)4 belongs to the P21/n space group with lattice parameters: a=10.835(3) Å, b=9.003(2) Å, c=10.314(1) Å, β=106.09(7)° and Z=4 and is isostructural with TlNd(PO3)4. The IR absorption spectra of the two forms show a chain polyphosphates structure. The last modification of KYP4O12 crystallizes in the C2/c space group with lattice parameters: a=7.825(3) Å, b=12.537(4) Å, c=10.584(2) Å, β=110.22(7)° and Z=4 is isostructural with RbNdP4O12 and contains cyclic anions. The methods of chemical preparations, the determination of crystallographic data and IR spectra for these compounds are reported.  相似文献   

2.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

3.
A novel three-dimensional metal selenite [Fe2(H2O)4(SeO3)2] (1) has been hydrothermally synthesized and characterized by the elemental analyses, IR spectrum, TG analysis and the single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/n, with a=6.5283(13) Å, b=8.8754(18) Å, c=7.6798(15) Å, (=98.82(3)β, V=439.71(15) Å3, and Z=2. Compounds 1 exhibits interesting three-dimensional structure constructed from {FeO6} octahedra and {SeO3} pyramids linked via the corner- and/or edge-sharing mode. The most interesting structural feature of compound 1 is that the existence of multidirectional intersecting double helical chains in one compound.  相似文献   

4.
G. Valle  G. Casotto  P.L. Zanonato  B. Zarli   《Polyhedron》1986,5(12):2093-2096
The X-ray structures of the complexes Eu(NO3)(Ph3PO)3(acetone)2 (A) (Ph3PO = triphenylphosphine oxide) and Eu(NO3)3(Ph3PO)2(ethanol) (B) have been solved by the heavy-atom method, by using the three-dimensional Patterson-Fourier synthesis. The crystals are both monoclinic and belong to the space group P21/n, with Z = 4. The cell dimensions are: a = 27.825(4) Å, b = 19.422(4) Å, c = 11.238(2) Å, β = 94.9(3)° for A; and a = 22.193(4) Å, b = 10.866(2) Å, c = 17.101(3) Å, β = 105.6(3)° for B. In both complexes the europium(III) ion is ennea-coordinated to three chelate nitrate groups and three oxygens of the Ph3PO ligands for A and two of the Ph3PO and one of the ethanol for B. The acetone molecules of A are outside the coordination sphere of the metal and disordered.  相似文献   

5.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

6.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

7.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

8.
The strong π-acid ligand Ph2PN(iBu)PPh2 reacts with Co2(CO)S (1:1) to give Co2[μ-Ph2PN(iBu)PPh2] (μ-CO)2(CO)4 (1); however, when the ratio is 2:1 a novel species [Co{Ph2PN(iBu)PPh2-P,P′}2(CO)][Co(CO)4] (2) has been obtained. Crystal data for 2: Mr = 1140.83; triclinic, space group P , a = 12.330(2), b = 13.340(2), c = 18.122(3) Å, = 86.63(1), β = 80.75(1), γ = 84.24(1)°, V = 2924 Å3, Z = 2; R = 0.060 for 3711 reflections having I 3σ(I). The results of X-ray diffraction, ESR, variable-temperature magnetic susceptibility, conductivity, and XPS analysis support that the species 2 is a d9-d9 cage molecule-pair. The mechanism for the formation of the species 2 has been investigated initially by 31P NMR.  相似文献   

9.
A coordination polymer was synthesized by the reaction of CoCl2 with 1,2,4-triazole-5-one (TO) and charaterized by means of IR and TG–DTG. Single-crystal structure analysis showed that the complex crystallized in the monoclinic space group C2/c: a = 23.105(9) Å, b = 3.5683(2) Å, c = 13.589(6) Å,  = 90°, β = 124.038(4)°, γ = 90°, V = 928.4(7) Å3, Z = 4. The standard molar enthalpy of formation of the complex was determined to be (−1034.28 ± 0.95) kJ mol−1.  相似文献   

10.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

11.
The reaction of Ru(CO)4(C2H4) or Ru(CO)5 with 1,5-Ph4P2N4S2 in CH2Cl2/hexane at 23°C produces the dimer [Ru(CO)2(Ph4 P2N4S2)]2 (2), which was shown by X-ray crystallography to have a centrosymmetric structure in which the P2N4S2 ring is attached to one ruthenium atom through two (geminal) nitrogen atoms and the remote sulfur atom and serves as a bridge to the other ruthenium atom via the second sulfur atom. Crystals of 2 ·2(CH2Cl2) are triclinic, space group P (No. 2), a = 12.901(1) Å, b = 13.072(1) Å, c = 10.123(1) Å, = 100.88(1)°, β = 98.90(1)°, γ = 67.50(1)°, V = 1542.4(3) Å, Z = 1 with final R and Rw values of 0.040 and 0.027, respectively.  相似文献   

12.
1,2:5,6:9,10:13,14-Tetrabenzo-3,7,11,15-tetradehydro[16]annulene, or tetrabenzocyclyne (QBC) and 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24]annulene (HBC) have been structurally characterized by X-ray. crystallography. QBC crystallizes in two different space groups; P21/c with a = 10.652(3) Å, b = 10.624(2) Å, c = 19.549(4) Å, β = 93.83(2)°, V = 2207.4(8) Å3, and Z = 4 and P41212 with a = 9.330(1) Å, c = 25.497(8) Å, V = 2219.6(12) Å, and Z = 4. HBC crystallizes in monoclinic P21/n with a = 14.763(3) Å, b = 10.296(2) Å, c = 22.057(4) Å, β = 108.61(3), V = 3177.4(11) Å3, T = 133 K, and Z = 4. Reaction of QBC with dicobaltoctacarbonyl has produced a tetracobalt complex which has been characterized by X-ray crystallography. This complex crystallizes in monoclinic P21/c with a = 14.699(3) Å, b = 17.188(3) Å, c = 17.254(3) Å, β = 112.63(3)°, V = 4023.5(13) Å3, and Z = 4. Only two of the four C---C triple bonds of QBC bind to dicobalthexacarbonyl moieties even when excess dicobaltoctacarbonyl is used.  相似文献   

13.
One-dimensional Co(dien)2(VO3)3·(H2O) was prepared from the hydrothermal reaction of NH4VO3, Co2O3, diethylenetriamine (dien) and H2O at 130 °C. The compound crystallizes in the monoclinic system, space group P21/c with a=16.1581(6) Å, b=8.7006(3) Å, c=13.9893(4) Å, β=103.1483(11)°, V=1915.13(11) Å3, Z=4, and R1=0.0268 for 3060 observed reflections. Single crystal X-ray diffraction revealed that the structure is composed of infinite one-dimensional chains formed by corner-sharing VO4 tetrahedra with Co(dien)3+ complex cations and crystallization water molecules occupying the interchain positions, which are held together to a three-dimensional network via extensive hydrogen-bonding interactions. The compound, with a new zig-zag conformation of metavanadate chains, is the first example of vanadium oxides incorporating trivalent transition metal coordination groups. Other characterizations by elemental analysis, IR and thermal analysis are also described.  相似文献   

14.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

15.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

16.
Two new Cd(II) complexes with a 3-(2-pyridyl)pyrazole-based ligand, [Cd(L)2(SCN)2] (1) and {[Cd(L)2N3](ClO4)}n (2) (L=3-(2-pyridyl)pyrazol-1-ylmethylbenzene) were synthesized and structurally characterized by elemental analyses, IR and single crystal X-ray diffraction analysis. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a=14.833(3), b=13.790(3), c=15.970(3) Å, β=110.89(3)° and Z=4, while 2 crystallizes in the monoclinic system, space group P21/c, with a=13.622(4), b=23.286(7), c=10.547(3) Å, β=111.084(6)° and Z=4. In the two complexes, the Cd(II) centers are coordinated by six nitrogen atoms, in which four from two distinct L ligands and two from thiocyanato (1) or azido (2) anions. Complex 1 has a mononuclear structure, whereas 2 has a 1D chain structure bridged by azido anions. In 2, the azido adopts a μ-1,3-trans coordination mode, which is not common in the azide Cd(II) complexes. In addition, in the structure of 2, the 1D chains were further assembled into a quasi-3D supramolecular network by the C–HO hydrogen-bonding interactions. The structural difference of the two complexes is attributable to the different anions, which have different coordination natures.  相似文献   

17.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

18.
One novel chiral copper(II) complex was successfully synthesized from the reaction of chiral 1,3-thiazolidine-2-thione ligand with CuCl2 in dichloromethane in the presence of Et3N and DMAP at room temperature. Its unique crystal structure was unambiguously disclosed by X-ray analysis. The crystal is tetragonal, space group I4(1), space group a=15.0875(11), b=15.0875(11), c=19.362(3) Å, =90, β=90, γ=90°, V=4407.4(8) Å3, Z=8, ρcalc=1.639 mg cm−3.  相似文献   

19.
Treatment of [Pd{CH2C(CH3)CH2}(Ph2PPy)Cl] (Ph2PPy = 2-(diphenylphosphino)pyridine) with cis-[Pd(tBuNC)2Cl2] in dichloromethane affords the mixed isocyanide-tertiary phosphine complex cis-[Pd(tBuNC)Ph2PPy)Cl2], in which the Ph2PPy is a monodentate P-donor, and [{Pd[CH2C(CH3)CH2]Cl}2]. The steric effects of the Ph2PPy bridging ligand in determining the reaction course is discussed. The complex cis-[Pd(tBuNC)(Ph2PPy)Cl2] was crystallographically characterized: P21/n, a = 15.143(2), b = 9.527(1), c = 17.517(4) Å, β = 113.96(1)°, V= 2309.4(7) Å3, Z = 4. The final R value was 0.044, Rw= 0.046 for the 3078 reflections with I > 3σ(I).  相似文献   

20.
A novel three-dimensional (3D) mixed-valence iron coordination polymer [Fe2IIIFeIIO2(IN)2(ox)] (IN=isonicotinate, OX=oxalate) (1) has been hydrothermally synthesized by using two different anionic ligands and characterized by elemental analysis, IR spectrum, electron spin resonance (ESR), X-ray photoelectron spectrum (XPS), thermogravimetric analysis (TGA) and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic, space group P2(1)/c with a=5.8774(7) Å, b=18.528(2) Å, c=7.7117(9) Å, V=817.69(17) Å3, Z=2, and R1=0.0321 (wR2=0.0777). The Fe(II) and Fe(III) centers in 1 both exhibit a distorted octahedral coordination geometry and are bridged by the IN and oxalate groups into a covalently bonded 3D metal–organic network. TGA showed that the 3D network possesses a good stability up to 291 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号