首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A utility‐based distributed data routing algorithm is proposed and evaluated for heterogeneous wireless sensor networks. It is energy efficient and is based on a game‐theoretic heuristic load‐balancing approach. It runs on a hierarchical graph arranged as a tree with parents and children. Sensor nodes are considered heterogeneous in terms of their generated traffic, residual energy and data transmission rate and the bandwidth they provide to their children for communication. The proposed method generates a data routing tree in which child nodes are joined to parent nodes in an energy‐efficient way. The principles of the Stackelberg game, in which parents as leaders and children as followers, are used to support the distributive nature of sensor networks. In this context, parents behave cooperatively and help other parents to adjust their loads, while children act selfishly. Simulation results indicate the proposed method can produce on average more load‐balanced trees, resulting in over 30% longer network lifetime compared with the cumulative algorithm proposed in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In wireless sensor networks, continued operation of battery‐powered devices plays a crucial role particularly in remote deployment. The lifetime of a wireless sensor is primarily dependent upon battery capacity and energy efficiency. In this paper, reduction of the energy consumption of heterogeneous devices with different power and range characteristics is introduced in the context of duty scheduling, dynamic adjustment of transmission ranges, and the effects of IEEE 802.15.4‐based data aggregation routing. Energy consumption in cluster‐based networks is modeled as a mixed‐integer linear and nonlinear programming problem, an NP‐hard problem. The objective function provides a basis by which total energy consumption is reduced. Heuristics are proposed for cluster construction (Average Energy Consumption and the Maximum Number of Source Nodes) and data aggregation routing (Cluster‐based Data Aggregation Routing) such that total energy consumption is minimized. The simulation results demonstrate the effectiveness of balancing cluster size with dynamic transmission range. The heuristics outperform other modified existing algorithms by an average of 15.65% for cluster head assignment, by an average of 22.1% for duty cycle scheduling, and by up to 18.6% for data aggregation routing heuristics. A comparison of dynamic and fixed transmission ranges for IEEE 802.15.4‐based wireless sensor networks is also provided. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The utilization of limited energy in wireless sensor networks (WSNs) is the critical concern, whereas the effectiveness of routing mechanisms substantially influence energy usage. We notice that two common issues in existing specific routing schemes for WSNs are that (i) a path may traverse through a specific set of sensors, draining out their energy quickly and (ii) packet retransmissions over unreliable links may consume energy significantly. In this paper, we develop an energy‐efficient routing scheme (called EFFORT) to maximize the amount of data gathered in WSNs before the end of network lifetime. By exploiting two natural advantages of opportunistic routing, that is, the path diversity and the improvement of transmission reliability, we propose a new metric that enables each sensor to determine a suitable set of forwarders as well as their relay priorities. We then present EFFORT, a routing protocol that utilizes energy efficiently and prolongs network lifetime based on the proposed routing metric. Simulation results show that EFFORT significantly outperforms other routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The features of transmissions in underwater sensor networks (UWSNs) include lower transmission rate, longer delay time, and higher power consumption when compared with terrestrial radio transmissions. The negative effects of transmission collisions deteriorate in such environments. Existing UWSN routing protocols do not consider the transmission collision probability differences resulting from different transmission distances. In this paper, we show that collision probability plays an important role in route selection and propose an energy‐efficient routing protocol (DRP), which considers the distance‐varied collision probability as well as each node's residual energy. Considering these 2 issues, DRP can find a path with high successful transmission rate and high‐residual energy. In fact, DRP can find the path producing the longest network lifetime, which we have confirmed through theoretical analysis. To the best of our knowledge, DRP is the first UWSN routing protocol that uses transmission collision probability as a factor in route selection. Simulation results verify that DRP extends network lifetime, increases network throughput, and reduces end‐to‐end delay when compared with solutions without considering distance‐varied collision probability or residual energy.  相似文献   

6.
Wireless sensor networks (WSNs) are characterized by their low bandwidth, limited energy, and largely distributed deployment. To reduce the flooding overhead raised by transmitting query and data information, several data‐centric storage (DCS) mechanisms are proposed. However, the locations of these data‐centric nodes significantly impact the power consumption and efficiency for information queries and storage capabilities, especially in a multi‐sink environment. This paper proposes a novel dissemination approach, which is namely the dynamic data‐centric routing and storage mechanism (DDCRS), to dynamically determine locations of data‐centric nodes according to sink nodes' location and data collecting rate and automatically construct shared paths from data‐centric nodes to multiple sinks. To save the power consumption, the data‐centric node is changed when new sink nodes participate when the WSNs or some queries change their frequencies. The simulation results reveal that the proposed protocol outperforms existing protocols in terms of power conservation and power balancing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
An efficient data process technology is needed for wireless sensor networks composed of many sensors with constrained communication, computational, and memory resources. Data aggregation is presented as an efficient and significant method to reduce transmitted data and prolong lifetime for wireless sensor networks. Meanwhile, many applications require preserving privacy for secure data aggregation. In this paper, we propose a high energy‐efficient and privacy‐preserving scheme for secure data aggregation. Because of the importance of communication overhead and accuracy, our scheme achieves less communication overhead and higher data accuracy besides providing for privacy preservation. For extensive simulations, we evaluate and conclude the performance of our high energy‐efficient and privacy‐preserving scheme. The conclusion shows that the high energy‐efficient and privacy‐preserving scheme provides better privacy preservation and is more efficient than existing schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Topology control plays an important role in the design of wireless ad hoc and sensor networks and has demonstrated its high capability in constructing networks with desirable characteristics such as sparser connectivity, lower transmission power, and smaller node degree. However, the enforcement of a topology control algorithm in a network may degrade the energy‐draining balancing capability of the network and thus reduce the network operational lifetime. For this reason, it is important to take into account energy efficiency in the design of a topology control algorithm in order to achieve prolonged network lifetime. In this paper, we propose a localized energy‐efficient topology control algorithm for wireless ad hoc and sensor networks with power control capability in network nodes. To achieve prolonged network lifetime, we introduce a concept called energy criticality avoidance and propose an energy criticality avoidance strategy in topology control and energy‐efficient routing. Through theoretical analysis and simulation results, we prove that the proposed topology control algorithm can maintain the global network connectivity with low complexity and can significantly prolong the lifetime of a multi‐hop wireless network as compared with existing topology control algorithms with little additional protocol overhead. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Introduction of mobile sinks into a wireless sensor network can largely improve the network performance. However, sink mobility can cause unexpected changes of network topology, which may bring excessive protocol overhead for route maintenance and may offset the benefit from using mobile sinks. In this paper, we propose an efficient data‐driven routing protocol (DDRP) to address this problem. The design objective is to effectively reduce the protocol overhead for data gathering in wireless sensor networks with mobile sinks. DDRP exploits the broadcast feature of wireless medium for route learning. Specifically, each data packet carries an additional option recording the known distance from the sender of the packet to target mobile sink. The overhearing of transmission of such a data packet will gratuitously provide each listener a route to a mobile sink. Continuous such route‐learning among nodes will provide fresh route information to more and more nodes in the network. When no route to mobile sink is known, random walk routing simply is adopted for data packet forwarding. Simulation results show that DDRP can achieve much lower protocol overhead and longer network lifetime as compared with existing work while preserving high packet delivery ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In wireless sensor networks, achieving load balancing in an energy‐efficient manner to improve the network lifetime as much as possible is still a challenging problem because in such networks, the only energy resource for sensor nodes is their battery supplies. This paper proposes a game theoretical‐based solution in the form of a distributed algorithm for constructing load‐balanced routing trees in wireless sensor networks. In our algorithm, load balancing is realized by adjusting the number of children among parents as much as possible, where child adjustment is considered as a game between the parents and child nodes; parents are considered as cooperative players, and children are considered as selfish players. The gained utility by each node is determined by means of some utility functions defined per role, which themselves determine the behavior of nodes in each role. When the game is over, each node gains the maximum benefit on the basis of its utility function, and the balanced tree is constructed. The proposed method provides additional benefits when in‐network aggregation is applied. Analytical and simulation results are provided, demonstrating that our proposed algorithm outperform two recently proposed benchmarking algorithms [1, 2], in terms of time complexity and communication overhead required for constructing the load‐balanced routing trees. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Efficient and accurate sensor deployment is a critical requirement for the development of wireless sensor networks. Recently, distributed energy‐efficient self‐deployment algorithms, such as the intelligent deployment and clustering algorithm (IDCA) and the distributed self‐spreading algorithm (DSSA), have been proposed to offer almost uniform distribution for sensor deployment by employing a synergistic combination of cluster structuring and a peer‐to‐peer deployment scheme. However, both DSSA and IDCA suffer from unnecessary movements that have arisen from an inappropriate design in partial force. To improve the performance of self‐deployment algorithms, a uniform and energy‐efficient deployment algorithm (UEEDA) is proposed in this paper. Simulation results demonstrate that the proposed UEEDA outperforms both DSSA and IDCA in terms of uniformity and algorithm convergence speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Connected dominating sets (CDS) can be used to form virtual backbones for the hierarchical routing to save energy in the wireless sensor networks. The existing algorithms for CDS can only be used to the topologies that have larger vertex connective degrees. Besides, most of them do not consider the energy characteristics of the virtual backbones constructed by the dominating sets. In this paper, a referenced energy‐based CDS algorithm (RECA) is proposed, which can generate smaller CDS in random topologies without the limitation of vertex connective degrees. At the same time, the algorithm introduces Referenced Energy as a parameter for nodes when making the decision whether they are chosen to be the dominators or not. Therefore, as the experimental results show, the energy characteristic of the dominating set is improved and routing in the virtual backbones constructed by such CDSs will have a better performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we propose a novel multidimensional privacy‐preserving data aggregation scheme for improving security and saving energy consumption in wireless sensor networks (WSNs). The proposed scheme integrates the super‐increasing sequence and perturbation techniques into compressed data aggregation, and has the ability to combine more than one aggregated data into one. Compared with the traditional data aggregation schemes, the proposed scheme not only enhances the privacy preservation in data aggregation, but also is more efficient in terms of energy costs due to its unique multidimensional aggregation. Extensive analyses and experiments are given to demonstrate its energy efficiency and practicability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In addition to the requirements of the terrestrial sensor network where performance metrics such as throughput and packet delivery delay are often emphasized, energy efficiency becomes an even more significant and challenging issue in underwater acoustic sensor networks, especially when long‐term deployment is required. In this paper, we tackle the problem of energy conservation in underwater acoustic sensor networks for long‐term marine monitoring applications. We propose an asynchronous wake‐up scheme based on combinatorial designs to minimize the working duty cycle of sensor nodes. We prove that network connectivity can be properly maintained using such a design even with a reduced duty cycle. We study the utilization ratio of the sink node and the scalability of the network using multiple sink nodes. Simulation results show that the proposed asynchronous wake‐up scheme can effectively reduce the energy consumption for idle listening and can outperform other cyclic difference set‐based wake‐up schemes. More significantly, high performance is achieved without sacrificing network connectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In 1‐dimensional queue wireless sensor networks, how to balance end‐to‐end latency and energy consumption is a challenging problem. However, traditional best path routing and existing opportunistic routing protocols do not address them well because relay hop counts are usually much more, and the link appears more unreliable compared with general mesh topology. In this work, we formulate these 2 problems as a multiobjective optimization problem. Specifically, we first classify network packets into types of time tolerant and time critical and introduce a residual energy collection mechanism of neighboring nodes for forwarder set selection. We then propose a time‐aware and energy‐efficient opportunistic routing protocol (TE‐OR) to optimize energy consumption and to reduce latency for time‐critical packets. We evaluate TE‐OR by different parameters and compare it with existing protocols. The performance results show that TE‐OR achieves a trade‐off between energy consumption and time delay and balances energy consumption among nodes while guaranteeing the latency of time‐critical packets is minimized.  相似文献   

17.
In the last decade, underwater wireless sensor networks have been widely studied because of their peculiar aspects that distinguish them from common terrestrial wireless networks. Their applications range from environmental monitoring to military defense. The definition of efficient routing protocols in underwater sensor networks is a challenging topic of research because of the intrinsic characteristics of these networks, such as the need of handling the node mobility and the difficulty in balancing the energy consumed by the nodes. Depth‐based routing protocol is an opportunistic routing protocol for underwater sensor networks, which provides good performance both under high and low node mobility scenarios. The main contribution of our work is presenting a novel simulator for studying depth‐based routing protocol and its variants as well as novel routing protocols. Our simulator is based on AquaSim–Next Generation, which is a specialized tool for studying underwater networks. With our work, we improve the state of the art of underwater routing protocol simulators by implementing, among other features, a detailed cross‐layer communication and an accurate model of the operational modes of acoustic modem and their energy consumption. The simulator is open source and freely downloadable. Moreover, we propose a novel and completely distributed routing protocol, named residual energy–depth‐based routing. It takes into account the residual energy at the nodes' batteries to select the forwarder nodes and improve the network lifetime by providing a more uniform energy consumption among them. We compare its performance with that of depth‐based routing protocol and a receiver‐based routing protocol implementing a probabilistic opportunistic forwarding scheme.  相似文献   

18.
In this paper, we address the energy‐efficient connectivity problem of a wireless sensor network (WSN) that consists of (1) static sensor nodes that have a short communication range and limited energy level, and (2) relay nodes that have a long communication range and unlimited power supply, and that can be added or relocated arbitrarily. For such a WSN, existing studies have been focused on the design of efficient approximation algorithms to minimize the number of relay nodes. By contrast, we propose a unified backbone construction framework that can be performed in a centralized manner with two objectives: (1) to minimize the number of nodes in the backbone and (2) to maximize the lifetime of the network. To solve such a challenging problem, we formulate three subproblems: (1) partial dominating set with energy threshold (PDSET); (2) partial dominating set with largest residual energy (PDSLE); and (3) minimum relay node placement (MRNP). For these three subproblems, we develop polynomial‐time algorithms. We also prove that our algorithm for PDSLE is optimal, and our algorithm for the PDSET and MRNP problems have small approximation ratios. Numerical results show that the proposed framework can significantly improve energy efficiency and reduce backbone size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Wireless sensor networks (WSNs) are being used in a wide variety of critical applications such as military and health‐care applications. Such networks, which are composed of sensor nodes with limited memory capacity, limited processing capabilities, and most importantly limited energy supply, require routing protocols that take into consideration these constraints. The aim of this paper is to provide an efficient power aware routing algorithm for WSNs that guarantees QOS and at the same time minimizes energy consumption by calculating the remaining battery capacity of nodes and taking advantage of the battery recovery process. We present an online‐battery aware geographic routing algorithm. To show the effectiveness of our approach, we simulated our algorithm in ns2 and compared it with greedy perimeter stateless routing for wireless networks and battery‐aware routing for streaming data transmissions in WSNs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
王辛果 《电讯技术》2016,56(7):750-754
无线传感器网络通常使用低占空比的异步睡眠调度来降低节点能耗。由于发送节点在接收节点醒来后才能向其发送数据,这将引入额外的等待时延。在最近的一些任播路由机制中,发送节点动态地选择最先醒来的候选节点转发数据,以最小化等待时延。但是,由于从最先醒来的候选节点到基站的时延可能并不低,任播路由机制并不一定能最小化端到端总时延。为此,提出了一种适用于异步无线传感器网络的机会路由机制,将路由决策建模为强马尔科夫过程,并根据最优停止理论推导出该过程一种简化的停止规则。仿真结果表明,节点到基站的最大端到端时延仅为基于地理位置的机会路由的68.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号