首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Krüger O  Christoph G  Kalbe U  Berger W 《Talanta》2011,85(3):1428-1434
Stir bar sorptive extraction (SBSE) is an equilibrium extraction method used amongst others for the analysis of polycyclic aromatic hydrocarbons (PAH) in aqueous samples. We compared SBSE to liquid-liquid extraction (LLE) for aqueous eluates obtained from batch and column tests of PAH contaminated soils to check whether SBSE might be considered as an alternative sample preparation method. We used soils with different particle size distribution, organic matter content, and resulting eluate turbidity to test the sample preparation methods on eluates with matrices of varying complexity. Furthermore, we studied the influence of diluted organic matter (DOM) on the PAH sorption process to the polymer coating of the stir bar during SBSE. In the majority of cases, we found higher PAH concentrations (up to 288%) with SBSE than with LLE. The turbidity correlates with the difference in PAH results, i.e. the greater the turbidity in the eluate, the more PAH we found with SBSE compared to LLE. We observed no similar trend regarding the amount of total organic carbon (TOC). The presence of DOM in the eluate seems to hamper the SBSE slightly, the PAH recovery varied between 82 and 104%.  相似文献   

2.
As a crucial step in qualitative and quantitative analysis, sample pretreatment is commonly used to isolate the target analytes, concentrate them, or convert them into the forms tailored to the instrumental analysis. In recent years, there has been a trend for sample pretreatment techniques to become more miniaturized and more environmentally friendly. Stir bar sorptive extraction (SBSE), which was developed in 1999, is such an environmentally friendly microextraction technique. Compared with other microextraction techniques, including solid phase microextraction and liquid phase microextraction, SBSE provides a higher extraction efficiency and better reproducibility owing to the much greater amount of the extraction phase, and no special skills are required. However, there are some problems associated with SBSE, such as the limited applicable coatings, coating abrasion of the laboratory-made stir bar, and the difficulty in automation, which restrict the further improvement and application of SBSE. This review focuses on the development of SBSE in the past decade, in terms of coating preparation, automated systems, novel extraction modes, its use with various instruments, and applications in food, environmental, and biological samples.
Figure
Recent development of stir bar sorptive extraction.  相似文献   

3.
This review summarizes literature data from the past 5 years on new developments and/or applications of sample preparation methods for analysis of volatile organic compounds (VOC), mainly in air and water matrices. Novel trends in the optimization and application of well-established airborne VOC enrichment techniques are discussed, like the implementation of advanced cooling systems in cryogenic trapping and miniaturization in adsorptive enrichment techniques. Next, focus is put on current tendencies in integrated sampling-extraction-sample introduction methods such as solid phase microextraction (SPME) and novel in-needle trapping devices. Particular attention is paid to emerging membrane extraction techniques such as membrane inlet mass spectrometry (MIMS) and membrane extraction with a sorbent interface (MESI). For VOC enrichment out of water, recent evolutions in direct aqueous injection (DAI) and liquid-liquid extraction (LLE) are highlighted, with main focus on miniaturized solvent extraction methods such as single drop microextraction (SDME) and liquid phase microextraction (LPME). Next, solvent-free sorptive enrichment receives major attention, with particular interest for innovative techniques such as stir bar sorptive extraction (SBSE) and solid phase dynamic extraction (SPDE). Finally, recent trends in membrane extraction are reviewed. Applications in both immersion and headspace mode are discussed.  相似文献   

4.
Stir‐bar sorptive extraction is based on the partitioning of target analytes between the sample (mostly aqueous‐based liquid samples) and a stationary phase‐coated magnetic stir bar. Until now, only PDMS‐coated stir bars are commercially available, restricting the range of applications to the non‐selective extraction of hydrophobic compounds due to the apolar character of PDMS. In this work, a novel stir bar coated with molecularly imprinted polymer as selective extraction phase for sorptive extraction of thiabendazole (TBZ) was developed. Two different procedures, based on physical or chemical coating, were assessed for the preparation of molecularly imprinted stir bars. Under optimum conditions, recoveries achieved both in imprinted and non‐imprinted polymer stir bars obtained by physical coating were very low, whereas TBZ was favourably retained by imprinted over non‐imprinted polymer stir bars obtained by chemical coating and thus the latter approach was used in further studies. Different parameters affecting both stir‐bars preparation (i.e. cross‐linker, porogen, polymerization time) and the subsequent selective extraction of TBZ (i.e. washing, loading and elution solvents, extraction time) were properly optimized. The molecularly imprinted coated stir bars were applied to the extraction of TBZ from citrus samples (orange, lemon and citrus juices) allowing its final determination at concentrations levels according to current regulations.  相似文献   

5.
Solid-phase microextraction by immersion (IS-SPME) and headspace mode (HS-SPME), together with stir bar sorptive extraction (SBSE), have been assayed in combination with gas chromatography-ion trap tandem mass spectrometry (MS/MS) for analysing 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-tribromophenol, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole and 2,4,6-tribromoanisole in different liquid matrices. Once, the optimization of MS/MS fragmentation analysis was carried out, sample enrichment was performed using the three mentioned extraction methods, and comparison through the determination of linearity, and LOD and LOQs were carried out. SBSE and IS-SPME methods described enabled us to determine the target compounds at ng/l levels, concentrations lower than their olfactory threshold, which is not the case of HS-SPME. SBSE showed a higher concentration capability than both SPME techniques, especially when compared to the HS-SPME mode. Thus, SBSE should be the definitive technique to analyse halophenols and haloanisoles in aqueous matrices. SBSE has been also applied to nine aqueous matrices as different as tap water, wines or commercial lemon juice extract.  相似文献   

6.
A novel extraction procedure for stir bar sorptive extraction (SBSE) termed sequential SBSE was developed. Compared to conventional SBSE, sequential SBSE provides more uniform enrichment over the entire polarity/volatility range for organic pollutants at ultra-trace levels in water. Sequential SBSE consists of a SBSE performed sequentially on a 5-mL sample first without modifier using one stir bar, then on the same sample after addition of 30% NaCl using a second stir bar. The first extraction with unmodified sample is mainly targeting solutes with high Kow (logKow>4.0), the second extraction with modified sample solution (containing 30% NaCl) is targeting solutes with low and medium Kow (logKow<4.0). After extraction the two stir bars are placed in a single glass desorption liner and are simultaneously desorbed. The desorbed compounds were analyzed by thermal desorption and gas chromatography-mass spectrometry (TD-GC-MS). Recovery of model compounds consisting of 80 pesticides (organochlorine, carbamate, organophosphorus, pyrethroid, and others) for sequential SBSE was evaluated as a function of logKow (1.70-8.35). The recovery using sequential SBSE was compared with those of conventional SBSE with or without salt addition (30% NaCl). The sequential approach provided very good recovery in the range of 82-113% for most of the solutes, and recovery less than 80% for only five solutes with low Kow (logKow<2.5), while conventional approaches (with or without salt addition) showed less than 80% recovery for 23 and 41 solutes, respectively. The method showed good linearity (r2>0.9900) and high sensitivity (limit of detection: <10ngL(-1)) for most of the model compounds even with the scan mode in the MS. The method was successfully applied to screening of pesticides at ngL(-1) level in river water samples.  相似文献   

7.
Stir bar sorptive extraction (SBSE) is an extraction technique for enrichment of volatile and semi-volatile organic compounds from aqueous and gaseous media. After exposure to a sample, the stir bar, which is covered in a layer of a polysiloxane is subsequently removed and the sorbed compounds are then either thermally desorbed, and analysed by GC-MS or desorbed by means of a liquid, for improved selectivity or for interfacing to an LC system.The technique has been applied successfully to trace analysis in environmental, biomedical and food applications. Applications of SBSE to environmental, foodstuffs and pharmaceutical and biomedical samples are given.  相似文献   

8.

Stir bar sorptive extraction (SBSE) is an extraction technique for enrichment of volatile and semi-volatile organic compounds from aqueous and gaseous media. After exposure to a sample, the stir bar, which is covered in a layer of a polysiloxane is subsequently removed and the sorbed compounds are then either thermally desorbed, and analysed by GC-MS or desorbed by means of a liquid, for improved selectivity or for interfacing to an LC system.The technique has been applied successfully to trace analysis in environmental, biomedical and food applications. Applications of SBSE to environmental, foodstuffs and pharmaceutical and biomedical samples are given.

  相似文献   

9.
A simple and sensitive method for the determination of polar aromatic amines (PAAs) was developed using stir bar sorptive extraction (SBSE) coupling to high-performance liquid chromatography. A hydrophilic poly(vinylimidazole-divinylbenzene) (VIDB) monolithic material was prepared and acted as SBSE coating. The influences of polymerization conditions for VIDB on the extraction efficiency were investigated using aniline and 2,4-dinitroaniline as detected solutes. To achieve optimum extraction performance for PAAs, several parameters including extraction and desorption time, desorption solvent, ionic strength and pH value of sample matrix were investigated. The results showed that under the optimized experimental conditions, the method showed good sensitivity and excellent recoveries, as well as advantages such as linearity, simplicity, low cost and high feasibility. The extraction performance of present method to the target compounds also compared with commercial SBSE which using polydimethylsiloxane as coating and other SBSE which based on monolithic materials. Finally, the proposed method was successfully applied to the determination of PAAs in lake and sea waters, and excellent recoveries of spiked target compounds in real samples were obtained.  相似文献   

10.
搅拌棒吸附萃取涂层研制进展   总被引:2,自引:0,他引:2  
搅拌棒吸附萃取(SBSE)是20世纪90年代末发展起来的一种新型无溶剂样品前处理技术,具有固定相体积大、萃取容量高、无需外加搅拌子、可避免竞争性吸附、能在自身搅拌的同时实现萃取富集等优点,已广泛应用于环境、食品和生物等复杂样品中目标物质的痕量分析。涂层是SBSE技术的核心,决定了萃取选择性和容量。本文简要介绍了SBSE涂层的萃取原理、萃取解吸模式及其影响因素,重点阐述了近年SBSE涂层制备技术与方法,探讨了SBSE涂层发展中的不足,并展望了其发展趋势。  相似文献   

11.
Kimchi is a traditional fermented vegetable, known for its complex flavor. Herein, we compared compounds related to the kimchi flavor, identified by gas chromatography-mass spectrometry (GC-MS) with the developed solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE) techniques. Although headspace-solid phase microextraction (HS-SPME) detected more volatile compounds than nondestructive-headspace-solid-phase microextraction (ND-HS-SPME), those identified by ND-HS-SPME were considered closely related to the flavor of the intact kimchi. Furthermore, direct immersion-stir bar sorptive extraction (DI-SBSE) detected more volatile and nonvolatile compounds than headspace-stir bar sorptive extraction (HS-SBSE), while more sulfur compounds were identified by HS-SBSE. Therefore, we recommend the use of the HS-SPME method using a divinylbenzene/carboxen/polydimethylsiloxane fiber for identifying compounds related to the kimchi flavor. In addition, principal component analysis showed ND-HS-SPME and HS-SBSE to be closely clustered. Overall, we estimated that the samples obtained via the nondestructive sample preparation emits fewer polar volatile flavor compounds than those obtained using the destructive sample preparation. Considering the findings presented herein, we believe that this study contributes to optimizing the flavor analysis of kimchi and other fermented vegetables.  相似文献   

12.
Stir bar sorptive extraction (SBSE) is a microextraction technique, introduced to overcome the problem of limited extraction capacity and fragile fiber coatings inherent in the solid phase microextraction technique. The major limitations of the SBSE technique are that only polydimethylsiloxane has been commercially available, this reduces its use to non-polar analytes, and its tedious reconstitution step which can lead to loss of analytes and introduction of impurities. The current trend has been aimed at the use of other materials, some of which are commercially available, such as restricted access materials, carbon adsorbents, molecularly imprinted polymers, ionic liquids, microporous monoliths, sol–gel prepared coatings and dual phase material. This has greatly helped in widening the applications of SBSE for pesticide analysis in fruits and vegetables and other matrices. The introduction of a thermal desorption unit which eliminates the reconstitution step of the stir bar in organic solvents before instrumental analysis has helped to automate the extraction method online with gas chromatography. This paper reviews the use of SBSE in pesticide residues analysis in fruits and vegetables, with a view on sample preparation steps, method optimization and validation of analytical figures of merit.  相似文献   

13.
The partitioning of non-polar analytes into the silicone polydimethylsiloxane (PDMS) is the basis for many analytical approaches such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE) and environmental passive sampling. Recently, the methods have been applied to increasingly complex sample matrices. The present work investigated the possible effect of complex matrices on the sorptive properties of PDMS. First, SPME fibers with a 30 μm PDMS coating were immersed in 15 different matrices, including sediment, suspensions of soil and humic substances, mayonnaise, meat, fish, olive oil and fish oil. Second, the surface of the fibers was wiped clean, and together with matrix-free control fibers, they were exposed via headspace to 7 non-polar halogenated organic chemicals in spiked olive oil. The fibers were then solvent-extracted, analyzed, and the ratios of the mean concentrations in the matrix-immersed fibers to the control fibers were determined for all matrices. These ratios ranged from 92% to 112% for the four analytes with the highest analytical precision (i.e. polychlorinated biphenyls (PCBs) 3, 28, 52 and brominated diphenyl ether (BDE) 3), and they ranged from 74% to 133% for the other three compounds (i.e. PCBs 101, 105 and γ-hexachlorocyclohexane (HCH)). We conclude that, for non-polar, hydrophobic chemicals, the sorptive properties of the PDMS were not modified by the diverse investigated media and consequently that PDMS is suited for sampling of these analytes even in highly complex matrices.  相似文献   

14.
In this contribution, polyurethane foams are proposed as new polymeric phases for stir bar sorptive extraction (SBSE). Assays performed for polyurethane synthesis demonstrated that four series of formulations (P(1), P(2), P(3) and P(4)) present remarkable stability and excellent mechanical resistance to organic solvents. For polymer clean-up treatment, acetonitrile proved to be the best solvent under sonification, ensuring the reduction of the contamination and interferences. SBSE assays performed on these polyurethane polymers followed by liquid desorption and high-performance liquid chromatography-diode array detection (LD-HPLC-DAD) or large volume injection-capillary gas chromatography-mass spectrometry (LD-LVI-GC-MS), showed that P(2) presents the best recovery yields for atrazine, 2,3,4,5-tetrachlorophenol and fluorene, used as model compounds in water samples at a trace level. SBSE(P(2)) assays performed on this polymer mixed up with several adsorbent materials, i.e. activated carbon, a mesoporous material and a calixarene, did not bring any advantages in relation with the polymeric matrix alone. The comparison between assays performed by SBSE(P(2)) and by the conventional SBSE(PDMS) showed much better performance for the former phase on aqueous samples spiked with atrazine, 2,3,4,5-tetrachlorophenol and fluorene, in which the foremost two analytes present recovery values 3- and 10-fold higher, respectively. The polyurethanes proposed as new polymeric phases for SBSE provided powerful capabilities for the enrichment of organic compounds from aqueous matrices, showing to be indicated mainly in the case of the more polar analytes.  相似文献   

15.
A biocompatible stir bar sorptive extraction (SBSE) device was prepared using an alkyl-diol-silica (ADS) restricted access material (RAM) as the SBSE coating. The RAM-SBSE bar was able to simultaneously fractionate the protein component from a biological sample, while directly extracting caffeine and its metabolites, overcoming the present disadvantages of direct sampling in biological matrices by SBSE, such as fouling of the extraction coating by proteins. Desorption of the analytes was performed by stirring the bar in a water/ACN mixture (3/1, v/v) and subsequently reconcentrating the sample solution in water to enable HPLC-UV analysis to be performed. The limit of detection, based on a signal to noise ratio of 3, for caffeine was 25 ng/mL in plasma. The method was confirmed to be linear over the range of 0.5-100 microg/mL of caffeine with an average linear coefficient (R2) value of 0.9981. The injection repeatability and intra-assay precision of the method were evaluated over ten injections, resulting in a %RSD of approximately 8%. The RAM-SBSE device was robust (>50 extraction in plasma without significant signal loss) and simple to use, providing many direct extractions and subsequent determination of caffeine and its metabolites in biological fluids. In contrast to existing sample preparation methods for the analysis of caffeine and selected metabolites in biological fluids, this feasibility study using a biocompatible SBSE approach was advantageous in terms of simplifying the sample preparation procedures.  相似文献   

16.
Yuling Hu 《Talanta》2010,82(2):464-4294
A novel stir bar coated with molecularly imprinted polymer (MIP) as selective extraction phase for sorptive extraction of triazine herbicides was developed. The stir bar was prepared by chemically bonding the MIP to the glass bar to improve its stability. A homogeneous and porous structure was observed on the stir bar surface. Extraction performance shows that the MIP-coated stir bar has stronger affinity to the template molecule terbuthylazine as compared with that of the reference stir bar without addition of template. Owning to the shape and structural compatibility, the obtained stir bar also demonstrated specific selectivity to the structural related-compounds of nine triazines, and thus can be applied to simultaneous determination of these compounds from complex samples coupled with high performance liquid chromatography. Four complex samples with different matrix, including rice, apple, lettuce and soil were used to evaluate this proposed method. The limits of detection obtained are in the range of 0.04-0.12 μg L−1, and the recoveries for the spiked rice, apple, lettuce and soil samples were 80.8-107.7%, 80.6-107.8%, 72.0-109.8% and 89.0-114.8% with RSD from 1.2 to 7.9%, respectively. Moreover, this MIP-coated stir bar was firm, durable and can be prepared simply and reproducibly. The developed coating method would be useful to prepare a range of selective stir bars in order to extend the applicability of stir bar sorptive extraction (SBSE) in complex sample analysis.  相似文献   

17.
In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.  相似文献   

18.
A new sample preparation method, stir bar sorptive extraction (SBSE), has been evaluated for the enrichment of organic solutes from biological fluids such as urine and blood. In SBSE, a stir bar coated with a polydimethylsiloxane layer is stirred for a given time in the sample. After sampling the stir bar is placed in a thermal desorption unit coupled on-line to capillary gas chromatography-mass spectrometry (SBSE-TD-CGC-MS). The principle and operation of SBSE are presented. Total profiling and target compound analysis have been selected as applications to illustrate the performance of SBSE-TD-CGC-MS (MSD). It is demonstrated that a variety analytes ranging from biological markers (phenols, hormones, fatty acids) to artificial contaminants (recreational drugs, plasticizers) can be enriched with high sensitivity. For polar solutes, in-situ derivatization can enhance both recovery into the polydimethylsiloxane (PDMS) layer and chromatographic analysis. Two types of derivatization have been applied, derivatization with ethyl chloroformate and with acetic acid anhydride. Linearity, detectability, and repeatability are illustrated by the determination of 1-hydroxypyrene in a urine sample from a smoker.  相似文献   

19.
An easy, fast and reliable analytical method is proposed for the determination of the concentration of volatile phenols (ethyl- and vinylphenols) in wines. The novel stir bar sorptive extraction (SBSE) technique is employed, following a simple and fast procedure that allows 15 samples to be extracted simultaneously using very small sample volume. Extracts are desorbed in a thermodesorption system (TDS) coupled on-line to a gas chromatograph-mass spectrometry system. The SBSE offers better recovery and linear regression coefficient (r2) for the four volatile phenols than solid-phase extraction (SPE). The mass spectrometric detection in selected ion monitoring mode contributes to the lower detection limit and good sensibility obtained with this method.  相似文献   

20.
Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号