首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Densities of the binary mixtures of diethylcarbonate with benzene and substituted benzenes, namely toluene, bromobenzene, chlorobenzene and nitrobenzene have been measured as a function of the composition, at 293.15 K and atmospheric pressure using a bicapillary pycnometer with an accuracy of 4 parts in 104.The calculated excess molar volumes, V E were correlated with Redlich-Kister equation. The excess molar volumes are negative over the entire range of composition for the systems diethylcarbonate with benzene, toluene, bromobenzene and nitrobenzene. An inversion of the sign of V E is observed over some concentration for mixtures of diethylcarbonate with chlorobenzene. Partial molar volumes, Vi are also evaluated and their values have been extrapolated to zero concentration to obtain the limiting value at infinite dilution, Vo i . The numerical values of the excess molar volumes for binary mixtures decrease in the order: chlorobenzene > benzene > bromobenzene ≈ toluene > nitrobenzene. The results are explained in terms of dissociation of the self-associated solute molecules and the formation of aggregates between unlike molecules.  相似文献   

2.
赵小军 《广州化学》2003,28(4):34-37
采用CP-I型汽液平衡双循环釜,测定了333.15 K时乙苯+异丙醇、邻二甲苯+异丙醇、间二甲苯+异丙醇、对二甲苯+异丙醇四个体系的汽液平衡数据,计算了该温度下四个体系的过量摩尔Gibbs自由能,并对所测数据进行了恒温下热力学一致性检验。用Wilson方程关联了实验数据,拟合精度令人满意。  相似文献   

3.
The excess molar volume (V E), viscosity deviations (Δη) and Gibbs excess energy of activation for viscous flow (G∗E) have been investigated from density (ρ) and viscosity (η) measurements of eight binary mixtures of 1,3-dioxolane with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, and i-amyl alcohol over the entire range of mole fractions at 303.15 K. The viscosity data have been correlated with the Grunberg and Nissan equation. Furthermore, excess isentropic compressibilities (KSE) have been calculated from ultrasonic speed measurements of these binary mixtures at 303.15 K. The deviations have been fitted by a Redlich–Kister equation and the results are discussed in terms of molecular interactions and structural effects. The excess properties are found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures. The systems studied exhibit very strong cross association through hydrogen bonding.  相似文献   

4.
Abstract

From dilatometric method at 293.15,303,15, and 313.15K for binary mixtures of water and 1,2-alkane diols, the excess molar volumes, VE and the partial molar volumes, V i of both components at 293.15 K have been obtained as a function of mixtures composition. Excess molar volumes were calculated and correlated by a Redlich-Kister type function in terms of mole fraction. The partial molar volumes have been extrapolated to zero concentration to obtain the limiting values at infinite dilution, V 0 i . All mixtures showed negative values and decreases with the chain length of diols. The values become less negative with increasing temperature. The results are explained in terms of dissociation of the self-associated diol molecules and the formation of aggregates between unlike molecules.  相似文献   

5.
IntroductionMethylheptenone(CA Registry No. 1 1 0 - 93 -0 ) ,6 - methyl- 5 - hepten- 2 - one,one of theintermediates of isomethpetene synthesis,is atransparent liquid with a strong odor.A survey ofthe literatures shows that there are very fewreports upon the density measurements on thebinary mixtures of MHO and one of alkanols. Tounderstand the nature of MHO and the molecularinteractions between the components of the mixturefurther,the experimental determination on VE isindispensable.The …  相似文献   

6.
Densities and refractive indices have been measured for binary mixtures of 1-propyronitrile-3-hexylimidazolium bromide + ethanol in the temperature range 293.15–323.15 K. From the experimental data the excess molar volume V E, refractive index deviation Δn D, and the coefficient of thermal expansion α were calculated and fitted to fifth- and third-order Redlich–Kister type equations, respectively. Using the measured densities, the apparent molar volumes (V ϕ ), limiting apparent molar volumes (Vf0V_{\phi}^{0}) and limiting apparent molar expansivities (Ef 0E_{\phi} ^{0}) were also determined and the details are discussed.  相似文献   

7.
用比重瓶法测定了293.15 K时1-甲基咪唑醋酸盐([Mim]Ac)/1,3-二甲基咪唑醋酸盐([Mmim]Ac)/1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)-乙醇(EtOH)二元体系在全组成范围内的密度. 计算出[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的表观摩尔体积和体系的超额摩尔体积. 用三参数多项式关联拟合了表观摩尔体积与摩尔分数的关系,外推出组分的极限偏摩尔体积和摩尔体积. [Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的摩尔体积的外推值与实验值分别在±0.07和±0.04 cm3/mol范围内相一致. 计算出了[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH分别在无限稀溶液中的溶剂化系数. 用Redlich-Kister 方程关联拟合了超额摩尔体积与摩尔分数的关系. 分别根据极限偏摩尔体积、摩尔体积与极限偏摩尔体积的差值、溶剂化系数和超额摩尔体积对照讨论了分子间相互作用的强弱. 结果显示,在[Mim]Ac/[Mmim]Ac/[Emim]Ac的浓度无限稀溶液中,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序为[Mim]Ac-EtOH>[Mmim]Ac-EtOH >[Emim]Ac-EtOH;在EtOH的浓度无限稀溶液中,以及体系中[Mim]Ac/[Mmim]Ac/[Emim]Ac的摩尔分数在0.15~0.95间时,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序都为[Emim]Ac-EtOH>[Mmim]Ac-EtOH>[Mim]Ac-EtOH.  相似文献   

8.
The excess molar volumes (VE), excess surface tensions (σE), and deviations in molar refraction (RE) and isentropic compressibility (ksE) of binary mixtures of cyclohexanone with methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol have been determined over the entire composition range at 293.15 K. The results were fitted by the Redlich–Kister polynomial equation and the corresponding binary coefficients Ak have been derived. The standard deviations between the calculated and the experimental excess properties have been determined. The results provide information on the interactions of the molecules in the pure liquids as well as in the binary mixtures.  相似文献   

9.
The densities of binary mixtures of formamide (FA) with 1-butanol, 2-butanol, 1,3-butanediol, and 1,4-butanediol, including those of the pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E, partial molar volumes, and , at infinite dilution, and excess partial molar volumes, and , at infinite dilution were calculated. The variation of these parameters with composition and temperature of the mixtures are discussed in terms of molecular interactions in these mixtures. The partial molar expansivities, and , at infinite dilution and excess partial molar expansivities, and , at infinite dilution were also calculated. The V m E values were found to be positive for all the mixtures at each temperature studied, except for FA + 1-butanol which exhibits a sigmoid trend wherein V m E values change sign from positive to negative as the concentration of FA in the mixture is increased. The V m E values for these mixtures follow the order: 1-butanol < 2-butanol < 1,3-butanediol < 1,4-butanediol. It is observed that the V m E values depend upon the number and position of hydroxyl groups in these alkanol molecules.  相似文献   

10.
The speed of sound u in and densities of eight binary mixtures of p-dioxane (p-C4H8O2) with methylcyclohexane (c-C6H11CH3), 1-chlorohexane (C6H13C1), 1-bromohexane (C6H13Br), p-xylene [C6H4(CH3)2], propylbenzene (C6H5C3H7), methyl acetate CH3COOCH3), butyl acetate (CH3COOC4H9), and amyl acetate (CH3COOC5H11) were measured over the whole composition range at 30°C. Isentropic compressibilities (K S), Rao's molar sound functions (R), excess molar volumes (V E), excess isentropic compressibilities (K S E ) together with relative change in volume V/12 values, have been obtained for all measured mole fractions. The excess partial molar volume (V1-V 1 0 ) of p-dioxane in different solvents have also been estimated. The experimental results have been analyzed in terms of the Prigogine–Flory–Patterson theory of solutions.  相似文献   

11.
PAL  Amalendu GABA  Rekha 《中国化学》2007,25(12):1781-1789
Excess molar volumes Vm^E and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), MeOCH2CH(OH)Me, propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me, propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol), BuOCH2CH(OH)Me, and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol), t-BuOCH2CH(OH)Me with 1-butanol, and 2-butanol, at 298.15 K and atmospheric pressure. The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol, and positive for the systems 2-butanol+ 1-methoxy-2-propanol, and +1-propoxy-2-propanol, negative for the systems 2-butanol+1-butoxy-2-propanol, and change sign for the systems 2-butanol+ 1-ethoxy-2-propanol, and + 1-tert-butoxy-2-propanol. From the experimental data, the deviation in dynamic viscosity η from ∑χiηi has been calculated. Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.  相似文献   

12.
Abstract

Excess molar volumes vE have been measured for the binary liquid mixtures of propyl ethanoate with five n-alkanes (n-hexane, n-heptane, n-octane, n-nonane and n-decane) at 298.15 and 308.15 K, using an Anton Paar densimeter. All the mixtures studied present positive vE values that increase with the length of the chain of the alkane and with the temperature. The experimental results are compared with the predictions of the Nitta—Chao model.  相似文献   

13.
The knowledge and prediction of physicochemical properties of binary liquid mixtures is of great importance for understanding intermolecular interactions. Viscosities (η) have been investigated by using density (ρ) and kinematic viscosity (ν) measurements for 1,4-dioxane + water (D–W) mixtures over the entire range of mole fractions under atmospheric pressure, at 311.15, 316.15 and 320.15 K, in order to increase the studied temperatures range available from the literature and to improve the investigations. The viscosity Arrhenius activation energy of 1,4-dioxane + water mixtures was calculated from the present experimental viscosity measurements, and those presented in a previous work at only four temperatures, and for three temperatures in the present work, over the entire range of composition in the temperatures range from 293.15 to 323.15 K. Based on the partial molar activation energy from the Arrhenius equation for viscosity, interactions between water and 1,4-dioxane molecules are discussed. Comparison between some reduced Redlich–Kister functions covering the composition domain shows the existence of two distinct behaviors.  相似文献   

14.
Densities (ρ), speeds of sound (u), and isentropic compressibilities (k S) of binary mixtures of dimethyl sulfoxide (DMSO) with water, methanol, ethanol, 1-propanol, 2-propanol, acetone and cyclohexanone have been measured over the entire composition range at 293.15 and 313.15 K. The excess molar volumes (V E), the deviations in speed of sound (u E) and the deviations in isentropic compressibility (k S E) have been determined. The V E, u E and k S E values were fitted by the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The results obtained are discussed from the viewpoint of the existence of interactions between the components of the binary mixtures.  相似文献   

15.
Abstract

Experimental solubilities are reported for trans-stilbene dissolved in six binary alcohol + 1-propanol solvent mixtures at 25°C. The alcohol cosolvents studied were 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-pentanol and 3-methyl-1-butanol. Results of these measurements are used to test two mathematical representations based upon the combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister and Modified Wilson equations. For the six systems studied, the Combined NIBS/Redlich-Kister equation was found to provide the better mathematical representation of the experimental data, with overall average absolute deviations between measured and calculated values being approximately ±0.4%. Slightly larger deviations were noted in the case of the Modified Wilson equation.  相似文献   

16.
Abstract

Experimental solubilities are reported for trans-stilbene dissolved in six binary alkane + 1-propanol solvent mixtures at 25°C. the alkane cosolvents studied were hexane, heptane, octane, cyclohexane, methylcyclohexane and 2,2,4-trimethylpentane. Results of these measurements are used to test two mathematical representations based upon the combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister and Modified Wilson equations. for the six system studied, the combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister equation provided the better mathematical representation of the experimental data, with an overall average absolute deviation between measured and calculated values being approximately 0.4%. Slightly larger deviations were noted in the case of the Modified Wilson equation.  相似文献   

17.
Abstract

Experimental solubilities are reported for trans-stilbene dissolved in six binary alkane + 2-propanol solvent mixtures at 25[ddot]C. The alkane cosolvents studied were hexane, heptane, octane, cyclohexane, methylcyclohexane and 2,2,4-trimethylpentane. Results of these measurements are used to test two mathematical representations based upon the combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister and Modified Wilson equations. For the six systems studied, both equations provided an accurate mathematical representation of the experimental data, with overall average absolute deviations between measured and calculated values being approximately ± 0.5%.  相似文献   

18.
Excess molar enthalpies, $ H_m^E $ of N , N -dimethylacetamide + methanol, + ethanol, + propan-1-ol, + butan-1-ol, + pentan-1-ol, and + hexane-1-ol have been determined at 298.15 K and atmospheric pressure using a Parr 1455 solution calorimeter. While the excess molar enthalpies are negative for methanol and ethanol mixtures, those for propan-1-ol, butan-1-o1, pentane-1-ol, and hexan-1-ol mixtures are positive over the entire range of composition of N , N -dimethylacetamide. The $ H_m^E $ at around x , 0.5 follow the order: methanol<ethanol<propan-1-ol<butan-1-ol<pentan-1-ol<hexan-1-ol. The results are explained in terms of the self-association exhibited by the alkan-1-ols and the formation of aggregates between unlike molecules through OHO hydrogen bonding. The experimental results for mixtures are well represented by the Redlich - Kister equation.  相似文献   

19.
Summary. Density (ρ) and viscosity (η) values of the binary mixtures of DMP + 1-pentanol, 1-butanol, and 1-propanol over the entire range of mole fraction at 298.15 and 303.15 K were measured in atmospheric pressure. The excess molar volume (V E), viscosity deviations (Δη), and excess Gibbs energy of activation for viscous flow (G*E) were calculated from the experimental measurements. These results were fitted to Redlich–Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of McAllister. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

20.
Abstract

Experimental solubilities are reported for anthracene dissolved in four binary alkane + 2-methyl-2-propanol solvent mixtures at 25°C. The alkane cosolvents studied were n-heptane, cyclohexane, methylcyclohexane and 2,2,4-trimethylpentane. Results of these measurements are used to test two mathematical representations based upon the combined Nearly Ideal Binary Solvent (NIBS)/Redlich-Kister and Modified Wilson equations. For the four systems studied, the Combined NIBS/Redlich-Kister equation was found to provide the better mathematical representation of the experimental data, with overall average absolute deviations between measured and calculated values being approximately ±0.5%. Slightly larger deviations were noted in the case of the Modified Wilson equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号