首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10?5 to 6.97×10?4 mol L?1 with quantification and detection limits of 3.80×10?5 mol L?1 (14.07 mg L?1) and 1.13×10?5 mol L?1 (4.18 mg L?1), respectively.  相似文献   

2.
The solubilities of 4-(methylsulfonyl)benzaldehyde in the binary mixed solvents acetonitrile + methanol, acetonitrile + ethanol and acetonitrile + isopropanol were determined experimentally using an isothermal dissolution equilibrium method within the temperature range from 283.15 to 318.15 K under atmospheric pressure. The solubility of 4-(methylsulfonyl)benzaldehyde increased with increasing temperature and mass fraction of acetonitrile in each binary system. At the same temperature and mass fraction of acetonitrile, the mole fraction solubility of 4-(methylsulfonyl)benzaldehyde is greater in (acetonitrile + methanol) than in the other two mixed solvents. The solubility data were correlated using the CNIBS/R-K model, Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, Apelblat–Jouyban–Acree model, Ma model and Sun model. The maximum values of relative average deviation (RAD) and root-mean-square deviation (RMSD) are 1.53% and 1.17 × 10?4, respectively. All of the selected models provided good representation of the experimental solubilities. Furthermore, the standard enthalpies of dissolution were calculated. The dissolution process for 4-(methylsulfonyl)benzaldehyde in these mixed solvents is endothermic. The experimental solubility and the models presented in this work are important for the production and purification of 4-(methylsulfonyl)benzaldehyde.  相似文献   

3.
Neodymium(III) peroxotitanate is used as a precursor for obtaining Nd2TiO5. The last one possesses numerous valuable electrophysical properties. TiCl4, Nd(NO3)3·6H2O and H2O2 in mol ratio 1:2:10 were used as starting materials. The reaction ambience was alkalized to pH = 9 with a solution of NH3. The obtained neodymium(III) peroxotitanate and intermediate compounds of the isothermal heating were proved by the help of quantitative analysis and infrared spectroscopy (IRS). It has Nd4[Ti2(O2)4(OH)12]·7H2O composition. The absorption band observed in IRS at 831 cm?1 relates to a triangular bonding of the peroxo group of Ti, at 1062 cm?1—terminal groups Ti–OH and at 1491 and 1384 cm?1—the bridging OH?-groups Ti–O(H)–Ti. Nd2TiO5 was obtained by thermal decomposition of neodymium(III) peroxotitanate. The isothermal conditions for decomposition were determined on the base of differential thermal analysis, thermogravimetric and differential scanning calorimetry results in the temperature range of 20–1000 °C. The mechanism of thermal decomposition of Nd4[Ti2(O2)4(OH)12]·7H2O to Nd2TiO5 was studied. In the temperature range of 20–208 °C, a simultaneous decomposition of the peroxo groups by the separation of oxygen and hydrate water is conducted and Nd4[Ti2O4(OH)12] is obtained. From 208 to 390 °C, the terminal OH?-groups are separated and Nd4[Ti2O7(OH)6] is formed. In the range of 390–824 °C, the bridging OH?-groups are completely decomposed to Nd2TiO5. The optimal conditions for obtaining nanocrystalline Nd2TiO5 are 900 °C for 6 h and 20–80 nm.  相似文献   

4.
In the present study the solubilities of two antifungal drugs of ketoconazole and clotrimazole in supercritical carbon dioxide were measured using a simple static method. The experimental data were measured at (308 to 348) K, over the pressure range of (12.2 to 35.5) MPa. The mole fraction solubilities ranged from 0.2 · 10?6 to 17.45 · 10?5. In this study five density based models were used to calculate the solubility of drugs in supercritical carbon dioxide. The density based models are Chrastil, modified Chrastil, Bartle, modified Bartle and Mendez-Santiago and Teja (M–T). Interaction parameters for the studied models were obtained and the percentage of average absolute relative deviation (AARD%) in each calculation was displayed. The correlation results showed good agreement with the experimental data. A comparison among the five models revealed that the Bartle and its modified models gave much better correlations of the solubility data with an average absolute relative deviation (AARD%) ranging from 4.8% to 6.2% and from 4.5% to 6.3% for ketoconazole and clotrimazole, respectively. Using the correlation results, the heat of drug–CO2 solvation and that of drug vaporization was separately approximated in the range of (?22.1 to ?26.4 and 88.3 to 125.9) kJ · mol?1.  相似文献   

5.
In this study, the removal of nitrate using ZnO, MgO, and CeO2 nanoparticles (NPs) modified by humic acid from water was tested. Nanoparticles were modified by humic acid using the microwave-assisted technique and then modified ZnO (Zn–H), modified MgO (Mg–H), and modified CeO2 (Ce–H) were characterized through SEM, EDX, FTIR, and XRD analysis. Several important parameters influencing the removal of nitrate such as contact time, pH, adsorbent dosage and temperature were explored systematically by batch experiments. Isotherm studies were set up with the following optimum conditions: pH?=?5, adsorbent concentration of 1 g L?1, 180 min and 25 °C. The results revealed that the adsorption were best fitted to pseudo-second order and simple Elovich kinetics models. Langmuir, Freundlich and linear adsorption models were fitted to describe adsorption isotherms and constants. The isotherm analysis indicated that the adsorption data can be represented by both Freundlich and linear isotherm models. The maximum adsorption capacity (qm) was obtained at 55.1, 74.2 and 75.8 mg g?1 for Zn–H, Ce–H, and Mg–H, respectively. The thermodynamic parameters such as free energy, enthalpy and entropy of adsorption were obtained. From the thermodynamic parameters, it is suggested that the adsorption of nitrate on modified NPs (MNPs) followed the exothermic and spontaneous processes. The obtained results showed that the MNPs were efficient adsorbents for removing nitrate from aqueous media.  相似文献   

6.
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density.
Graphical Abstract Average voltage vs. number of cycles for the core–shell and pristine materials at 20 mA g?1 for 10 cycles followed by 90 cycles at 100 mA g?1
  相似文献   

7.
Nifedipine is a calcium channel blocker as well as a powerful vasodilator used to treat ischemic heart disease and hypertension. Its photosensitivity and very low solubility in water have been widely acknowledged as important properties deserving improvements. The main thrust of this study is to characterize the nature and the solid-state of nifedipine crystals obtained using different solvents as well as assess the stability by thermal methods (TG and DSC) and crystals structure by means of spectroscopic techniques (MID FTIR and XRD) and assess the dissolution parameters for such crystals. The calculated kinetic parameters activation energy (E a = 123.3 kJ mol?1 ± 0.1), the factor frequency (A = 25.93 ± 0.9 min?1), and the reaction order (n = 0.2) of the main stage of thermal decomposition of nifedipine raw material were performed according to the Ozawa model. The data showed a zero-order kinetic behavior for all crystals despite the different values of E a and A. The dissolution profiles were obtained for such crystals in three dissolution media with different pH values. After 1 h of dissolution, the higher amount of nifedipine dissolved was observed for crystals obtained in isopropyl alcohol (52.5 %, pH 4.5), followed by those in chloroform (48.1 %, pH 1.2) and subsequently in acetone (32.5 %, pH 6.8). Results showed different thermal stabilities and significant variations in the solubility of the crystals.  相似文献   

8.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

9.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

10.
The solubility (m S) of l-methionine in water was measured at 298.2 K and pressures up to 200 MPa. The data were fitted to the equation ln(m S/mol·kg?1) = ?4.62 × 10?6 (p/MPa)2 + 2.65 × 10?3 (p/MPa) ? 0.970 with a standard deviation of σ(ln m S) = 0.002. The pressure coefficient of the logarithm of solubility (?ln m S/?p) T was thermodynamically estimated to be (2.62 ± 0.34) × 10?3 MPa?1 at 0.10 MPa using several parameters such as partial molar volume and activity coefficient of l-methionine in water and molar volume of solid l-methionine. The resulting value agrees well with the second term on the right-hand side of the fitted equation above, indicating the reliability of the high-pressure solubility measurements. The value of (?ln m S/?p) T also was compared with those of other amino acids.  相似文献   

11.
A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L?1 and from 9.0 to 100.0 μmol L?1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L?1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.  相似文献   

12.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

13.
The solid–liquid phase equilibria for the ternary system 2-methyl-4-nitroaniline + 2-methyl-6-nitroaniline + ethyl acetate was determined experimentally by the method of isothermal solution saturation at temperatures of (293.15, 303.15 and 313.15) K under the pressure of 101.2 kPa. Based on the obtained solubility data, the isothermal phase diagrams of the system were constructed. At each temperature, there are two pure solid phases formed, which correspond to pure 2-methyl-4-nitroaniline and pure 2-methyl-6-nitroaniline, which was confirmed by Schreinemakers’ wet residue method and X-ray powder diffraction. The crystallization regions of pure 2-methyl-4-nitroaniline and pure 2-methyl-6-nitroaniline increased with decreasing temperature. The crystalline region of 2-methyl-4-nitroaniline was larger than that of 2-methyl-6-nitroaniline at a fixed temperature. The solubility data were correlated with the NRTL and Wilson models. The values of the root-mean-square deviations are 5.01 × 10?3 for the NRTL model, and 6.43 × 10?3 for the Wilson model. The solid–liquid equilibria, phase diagrams and the thermodynamic models for the ternary system can provide the foundation for separating 2-methyl-6-nitroaniline or 2-methyl-4-nitroaniline from its mixtures.  相似文献   

14.
Herein, an efficient graphene oxide/Fe3O4@polythionine (GO/Fe3O4/PTh) nanocomposite sorbent was introduced for magnetic solid-phase extraction combined with high-performance liquid chromatography–ultraviolet detection of duloxetine (DLX) in human plasma. To prepare the sorbent, an oxidative polymerization of thionine on the surface of magnetic GO was utilized while PTh was simply used as a surface modifier to improve extraction efficiency. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis, vibrating sample magnetometry, Fourier transform-infrared spectroscopy and Brunauer–Emmett–Teller technique were applied to characterize the prepared nanoparticles. Firstly, effective parameters controlling the performance of the extraction process were evaluated in detail and optimized. Under the optimized conditions, calibration curve showed linearity in the range of 2–2500 ng mL?1 with regression coefficient corresponding to 0.998. Limits of detection (LOD, S/N = 3) and quantification (LOQ, S/N = 10) were 0.5 and 2 ng mL?1, respectively. Reasonable intra-assay (3.5–4.5%, n = 6) and inter-assay (3.8–6.7%, n = 9) precision represented acceptable performance of the procedure. The applicability of the method was successfully extended to the determination of DLX in human plasma after oral administration of 60 mg single dose of the drug and finally some pharmacokinetic data was achieved.  相似文献   

15.
We have reported the semi conducting and photoelectrochemical properties of SrWO4 prepared by chemical route. The phase purity is confirmed by X-ray diffraction and the oxide is characterized by scanning electron microscopy, diffuse reflectance, and electrochemical impedance spectroscopy. SrWO4 crystallizes in the scheelite structure with an average crystallite size of 378 ± 6 nm. The Raman spectrum gives an intense peak at 920 cm?1 assigned to A g mode while the infrared analysis confirms the hexagonal coordination of tungsten. The UV-visible spectroscopy shows an indirect optical transition at 2.60 eV. SrWO4 exhibits n-type conduction by oxygen deficiency, confirmed by the chrono-amperometry and the intensity potential J(E) curve shows a small hysteresis. The Mott-Schottky plot gives electrons density of 5.72 × 1018 cm?3 and a flat band potential of 0.27 VSCE, indicating that the conduction band derives mainly from W6+: 6s orbital. The electrochemical impedance spectroscopy (EIS), measured in the range (1–105 Hz), shows the predominance of the bulk contribution with a dark impedance of 38 kΩ cm2. As application, the ibuprofen is degraded by electrocatalysis on SrWO4 with a conversion rate of 42%. An improvement up to 77% has been obtained by electrophotocatalysis under UV light; the conversion follows a first order kinetic with a rate constant of 2.32 × 10?4 min?1.  相似文献   

16.
A magnetic sorbent was fabricated by coating the magnetized graphene oxide with polystyrene (PS) to obtain a sorbent of the type GO-Fe3O4@PS. The chemical composition and morphology of the sorbent were characterized. The sorbent was employed for the enrichment of polycyclic aromatic hydrocarbons (PAHs) from water samples. Various parameters affecting the enrichment were investigated. The PAHs were then quantified by gas chromatography with flame ionization detection. Linear responses were found in the range of 0.03–100 ng mL?1 for naphthalene and 2-methylnaphthalene, and of 0.01–100 ng mL?1 for fluorene and anthracene. The detection limits (at an S/N ratio of 3) range between 3 and 10 pg mL?1. The relative standard deviations (RSDs) for five replicates at three concentration levels (0.05, 5 and 50 ng mL?1) of analytes ranged from 4.9 to 7.4%. The method was applied to the analysis of spiked real water samples. Relative recoveries are between 95.8 and 99.5%, and RSD% are <8.4%.
Graphical abstract A magnetic sorbent was fabricated by polystyrene coated on the magnetic graphene oxide for the extraction and preconcentration of PAHs in water samples prior to their determination by gas chromatography with flame ionization detection.
  相似文献   

17.
A simple, stability-indicating, reversed-phase liquid chromatographic method was developed for the determination of lacidipine in the presence of its degradation products. The analysis was carried out using a 150 mm × 4.6 mm i.d., 5 μm particle size Nucleodur MN-C18 column. Mobile phase containing a mixture of acetonitrile and 0.02 M phosphate buffer (70:30) at pH = 5.0 was pumped at a flow rate of 1 mL min?1 with UV-detection at 254 nm. The method showed good linearity in the range of 0.06–15 μg mL?1 with a limit of detection (S/N = 3) of 0.016 μg mL?1 (3.5 × 10?8 M). The suggested method was successfully applied for the analysis of lacidipine in bulk and in commercial tablets with average recoveries of 100.19 ± 0.81% and 100.05 ± 0.69%, respectively. The results were favorably compared to those obtained by a reference method. The suggested method was utilized to investigate the kinetics of alkaline, acidic, peroxide and photo-induced degradation of the drug. The apparent first-order rate constant, half-life times and activation energies of the degradation process were calculated. The pH profile curve was derived. The proposed method was successfully applied to the content uniformity testing of tablets.  相似文献   

18.
Spinel ferrites are an amazing class of materials that can find application in different fields, from sensors and lithium-ion batteries to the intriguing biomedical field. For the use as anode in lithium-ion batteries, ZnFe2O4 is rather competitive due to low price, abundance, environmental benignity, working voltage of ~1.5 V, and, most importantly, a high theoretical specific capacity (~1072 mA h g?1). For its practical application, however, some issues must be overcome, in particular its fast capacity fading and poor rate capability resulting from an inherent low electronic conductivity. Possible strategies are represented by ferrite carbon coating/embedding, peculiar synthesis routes, and doping. In this frame, we synthesized Ca- and Al-doped ZnFe2O4 nanoparticles by using microwave-assisted combustion synthesis, followed by a classical carbon coating (determined as about 5 wt% by thermogravimetry). A good solubility of Ca and Al up to 25 atom% on both Zn and Fe sites was obtained. Cyclic voltammetries evidenced redox reactions involving Zn and Fe ions, but also the Al intervention could be supposed. Galvanostatic charge–discharge cycles proved that particularly Al ions were useful to improve the anode structural stability at high C rate (up to 3C), thanks to the stronger Al–O bonds with respect to Fe–O ones. A further improvement of capacities comes from the use of sodium alginate as binder to substitute polyvinylidene fluoride in the anode preparation.  相似文献   

19.
Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g?1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g?1 after 50 cycles), and good rate performance (~?150 mAh g?1 at 2 A g?1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable.  相似文献   

20.
Here a novel material for methane adsorption was synthesized and studied, which is a graphene-like two-dimensional (2D) carbide (Ti2C, a member of MXenes), formed by exfoliating Ti2AlC powders in a solution of lithium fluoride (LiF) and hydrochloric acid (HCl) at 40 °C for 48 h. Based on first-principles calculation, theoretically perfect Ti2C with O termination has a specific surface area (SSA) of 671 m2 g?1 and methane storage capacity is 22.9 wt%. Experimentally, 2.85 % exfoliated Ti2C with mesopores shown methane capacity of 11.58 cm3 (STP: 0 °C, 1 bar) g?1 (0.82 wt%) under 5 MPa and the SSA was 19.1 m2 g?1. For Ti2C sample intercalated with NH3·H2O, the adsorbed amount was increased to 16.81 cm3 (STP) g?1 at same temperature. At the temperature of 323 K, the adsorbed amount of as-prepared Ti2C was increased to 52.76 cm3 (STP) g?1. For fully exfoliated Ti2C, the methane capacity was supposed to be 28.8 wt% or 1148 V (STP)v?1. Ti2C theoretically has much larger volume methane capacity than current methane storage materials, though its SSA is not very high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号