首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Heat capacities of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) have been measured by low-temperature adiabatic calorimetry. The purity of the compound, its triple-point temperature, and its enthalpy and entropy of fusion have been determined. The saturated vapor pressure was determined by comparative ebulliometry as a function of temperature in the 6.2–101.6 kPa pressure range and 374.2–460.9 K temperature range. The calorimetric enthalpy of vaporization at T = 298.15 K has been measured. The following thermodynamic properties were calculated for PMCP: normal boiling temperature, enthalpy of vaporization Δvap H m 0 (T) as a function of temperature, and critical parameters. The enthalpies of vaporization at 298.15 K obtained experimentally and by calculation methods match within their error limits, which validates their adequacy and the adequacy of the Δvap H m 0 = f(T) equation as an extrapolation.  相似文献   

2.
The integral enthalpies of solution of DL-α-alanylglycine and DL-α-alanyl-DL-α-alanine in water-organic solvent (acetonitrile, 1,4-dioxane, acetone, N,N-dimethylformamide, and N,N-dimethylsulfoxide) mixtures were measured at organic component concentrations x 2 = 0–0.4 mole fractions and T = 298.15 K. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the peptides from water into mixed solvents were calculated. The influence of the structure and properties of solutes and mixture composition on the thermochemical characteristics of the peptides was considered. The enthalpy coefficients of pair interactions (h xy ) of DL-α-alanylglycine and DL-α-alanyl-DL-α-alanine with organic solvent molecules were calculated. The h xy values were correlated with the properties of organic solvents using the Kamlet-Taft equation.  相似文献   

3.
With the Gibbs free energy method, we determine the molar fraction in a plasma at and out of thermal equilibrium consisting of air and aluminum for several percentages in the temperature range of 500–6000 K. We take three temperatures into account (T rot  = T h ; T vib ; T ex  = T e ). We indicate the formulae and the numerical method used to perform the calculation taking three condensed phases AlN, Al, Al2O3 into account. We show that the air percentage plays a major role to create these phases. We clarify the role plays on the vaporization temperatures and on the sublimation temperature by the non-thermal equilibrium of the plasma. This kind of plasma is found in arc roots, near a wall, in plasmas with a high value of electrical field,… The influence of the pressures until 30 × 105 Pa. is shown on molar fraction of the chemical species, on the vaporization temperatures and on the sublimation temperature. The vaporization temperatures are given versus the thermal non equilibrium versus various mixtures (air, aluminum) and versus the pressures (105 Pa–30 × 105 Pa).  相似文献   

4.
The low-temperature heat capacity of K2MoO4 was measured by adiabatic calorimetry. The smoothed heat capacity values, entropies, reduced Gibbs energies, and enthalpies were calculated over the temperature range 0–330 K. The standard thermodynamic functions determined at 298.15 K were C p ° (298.15 K) = 143.1 ± 0.2 J/(mol K), S°(298.15 K) = 199.3 ± 0.4 J/(mol K), H°(298.15 K)-H°(0) = 28.41 ± 0.03 kJ/mol, and Φ°(298.15 K) = 104.0 ± 0.4 J/(mol K). The thermal behavior of potassium molybdate at elevated temperatures was studied by differential scanning calorimetry. The parameters of polymorphic transitions and fusion of potassium molybdate were determined.  相似文献   

5.
Nicotinic acid (also known as niacin) was recrystallized from anhydrous ethanol. X-ray crystallography was applied to characterize its crystal structure. The crystal belongs to the monoclinic system, space group P2(1)/c. The crystal cell parameters are a = 0.71401(4) nm, b = 1.16195(7) nm, c = 0.71974(6) nm, α = 90°, β = 113.514(3)°, γ = 90° and Z = 4. Molar enthalpies of dissolution of the compound, at different molalities m/(mol·kg?1) were measured with an isoperibol solution–reaction calorimeter at T = 298.15 K. The molar enthalpy of solution at infinite dilution was calculated, according to Pitzer’s electrolyte solution model and found to be \( \Delta_{\text{sol}} H_{m}^{\infty } = ( 2 7. 3 \pm 0. 2) \) kJ·mol?1 and Pitzer’s parameters (\( \beta_{{\text{MX}}}^{{\text{(0)}L}} \), \( \beta_{{\text{MX}}}^{{\text{(1)}L}} \) and \( C_{{\text{MX}}}^{\phi L} \)) were obtained. The values of apparent relative molar enthalpies (\( {}^{\phi }L \)) and relative partial molar enthalpies (\( \overline{{L_{2} }} \) and \( \overline{{L_{1} }} \)) of the solute and the solvent at different molalities were derived from the experimental enthalpy of dissolution values of the compound. Also, the standard molar enthalpy of formation of the anion \( {\text{C}}_{ 6} {\text{H}}_{ 4} \text{NO}_{2}^{-} \) in aqueous solution was calculated to be \( {\Delta_{\text{f}}^{} H}_{\text{m}}^{\text{o}} ({\text{C}}_{ 6} {\text{H}}_{ 4} {\text{NO}}_{2}^{-} \text{,aq}) = - \left( {603.2 \pm 1.2} \right)\;{\text{kJ}}{\cdot}{\text{mol}}^{-1} \).  相似文献   

6.
The integral enthalpies of solution (T = 298.15 K) of L-α-alanyl-L-α-alanine in aqueous-organic solvents (acetonitrile, 1,4-dioxane, acetone, formamide, N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, and N,N-dimethylsulfoxide) were measured at organic component concentrations x 2 = 0–0.3 mole fractions. The standard enthalpies of solution (Δsol H o) and transfer (Δtr H o) of the peptide from water into mixed solvents were calculated. The influence of the structure and properties of solutes and mixture composition on solute thermochemical characteristics is considered. The enthalpy pair interaction coefficients h xy between L-α-alanyl-L-α-alanine and organic solvent molecules were calculated. The linear Kamlet-Taft four-parameter equation was used to reveal correlation between the h xy values and the properties of organic solvents.  相似文献   

7.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

8.
A novel bis-heterocyclic compound was synthesized and characterized. The crystal structure of the title compound (C22H20ClN5OS, Mr = 437.94) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.646 (2), b = 9.148 (3), c = 14.540 (4) Å, α = 94.422 (4), β = 98.500 (4), γ = 102.823 (4)°, V = 1101.8 (5) Å3, Z = 2, F(000) = 312, Dc = 1.320 g/cm3, μ = 0.2900 mm?1, the final R 1 = 0.041000 and wR 2 = 0.1160 for 2675 observed reflections with I > 2σ(I). A total of 5623 reflections were collected, of which 3866 were independent (R int = 0.019000). The fungicidal activity of title compound was determined, the results showed the title compound displayed moderate fungicidal activity against G. zeae Petch, Phytophthora infestans (Mont.) de Bary, Botryosphaeria berengeriana f. sp. piricola (Nose) koganezawa et Sakuma, Fusarium oxysporum f.sp. cucumerinum, and Cercospora arachidicola.  相似文献   

9.
The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance (N 1 = 99.66 mol %), triple point temperature (T tp = 293.26 K), and enthalpy of fusion (Δfus H m ° = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H m ° (298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2–101.6 kPa was determined by comparative ebulliometry. The normal boiling point (T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H m ° (298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.  相似文献   

10.
The molar heat capacity and the standard (p 0 = 0.1 MPa) molar enthalpies of formation of the crystalline of bis(glycinate)lead(II), Pb(gly)2; bis(dl-alaninate)lead(II), Pb(dl-ala)2; bis(dl-valinate)lead(II), Pb(dl-val)2; bis(dl-valinate)cadmium(II), Cd(dl-val)2 and bis(dl-valinate)zinc(II), Zn(dl-val)2, were determined, at T = 298.15 K, by differential scanning calorimetry, and high precision solution-reaction calorimetry, respectively. The standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar metal–ligand dissociation enthalpies, M(II)–amino acid, \( \langle D_{\text{m}} \rangle \)(M–L), were derived and compared with analogous copper(II)–ligand and nickel(II)–ligand.θθ
M(II)–amino acid \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \)(cr)/kJ mol?1
Bis(glycinate)lead(II), Pb(gly)2 ?998.9 ± 1.9
Bis(dl-alaninate)lead(II), Pb(ala)2 ?1048.7 ± 1.8
Bis(dl-valinate)lead(II), Pb(val)2 ?1166.3 ± 2.5
Bis(dl-valinate)cadmium(II), Cd(val)2 ?1243.7 ± 2.7
Bis(dl-valinate)zinc(II), Zn(val)2 ?1306.1 ± 2.3
  相似文献   

11.
A new three-dimensional platinum(II)–thallium(I) coordination polymer [{Pt(pda)(NHCOtBu)2}4Tl4][Pt(CN)4]2·2H 2 O (pda = 1,2-propyldiamine) has been prepared from the direct reaction of [Tl2Pt(CN)4] and [Pt(pda)(NHCOtBu)2] in water, and its structure was characterized by X-ray diffraction analysis. The compound crystallizes in monoclinic, space group Pn, a = 11.567(2) Å, b = 11.570(2) Å, c = 37.677(8)Å, β = 94.64(3)°, V = 5025.8(17) Å3, Z = 2, R1 = 0.0679 and wR2 = 0.1574 [I >  2σ (I)], Goodness-of-fit on F 2 = 1.055. The compound exhibits a novel 3D network structure consisting of [Pt(CN)4]2? connected 1D infinite Pt–Tl–Pt–Tl chains via strong Pt–Tl bonds.  相似文献   

12.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

13.
The apparent protonation constant of an amino butanol (AB) and its carbamate formation constant in the CO2–H2O–AB system were determined at T = 298.15–328.15 K, and at various ionic strengths up to 0.2 mol·L?1 by potentiometric titration. The Debye–Hückel equation was used to extrapolate the protonation constants to zero ionic strength. The variation of the thermodynamic equilibrium constant for carbamate formation with temperature was modeled according to the relationship of log10 K1 = 280.91/T ? 0.1105, while the temperature dependency of the amine protonation constant was correlated by log10 K2 = 1926.53/T + 2.9482. Van’t Hoff type plots of the pK values showed linear relationships indicating that the standard enthalpy changes of reaction are constant over this range of temperatures. Hence, our current findings are crucial for designing efficient unit operations involving separation of CO2 from natural or flue gases.  相似文献   

14.
The integral enthalpies of solution of DL-α-alanylglycine and DL-α-alanylalanine in water-ethanol, water-n-propanol, and water-isopropanol mixtures were measured calorimetrically at alcohol concentrations x 2 = 0?0.4 mole fractions. The standard enthalpies of solution (Δsol H°) of the peptides and their transfer (Δtr H°) from water into the mixed solvents were calculated. The influence of the structure and properties of the solutes and mixture composition on the enthalpy characteristics were considered. The Δsol H° = f(x 2) and Δtr H° = f(x 2) dependences were found to have extrema. The enthalpy coefficients of pair interactions (h xy ) between the peptide and alcohol molecules were calculated. The coefficients were positive and increased in the series ethanol, n-propanol, isopropanol.  相似文献   

15.
Guanidine dichloroacetate was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurement shows that this compound undergoes a reversible phase transition at about 275 K with a heat hysteresis of 28 K. Step-like dielectric anomaly observed at 274 K further confirms the phase transition. The single-crystal X-ray diffraction data suggested that these was a transition from a room-temperature phase with the space group of P21/n (a = 8.030(5), b = 12.014(9), c = 8.124(6) Å, β = 96.089(1)°, V = 779.3(1) Å3, and Z = 4) to a low-temperature one with the space group of P21/c (a = 7.941(2), b = 11.828(3), c = 10.614(2) Å, β = 130.985(1)°, V = 752.6(3) Å3, and Z = 4). The displacements of hydrogen bonds induce the structure phase transition.  相似文献   

16.
Schizophrenia is a debilitating mental disorder which affects approximately 1% of the world’s population. Clozapine is an atypical antipsychotic showing unmatched effectiveness in the control of treatment-resistant schizophrenia. Unlike typical antipsychotics, clozapine does not induce extrapyramidal side effects (EPS), tardive dyskinesia or elevate prolactin levels. However, clozapine can induce a potentially fatal blood disorder, agranulocytosis, in 1–2% of patients, severely limiting its clinical use. The model for antipsychotic activity under investigation is based on obtaining a clozapine-like profile with preferential dopamine D4 and serotonin 5-HT2A receptor affinity. Profiled herein are three unique members of a series of prospective antipsychotic agents. Compound (I) originated from the structural hybridization of the commercial therapeutics, clozapine and haloperidol, whilst compounds (II) and (III) possess an alternative tricyclic nucleus derived from JL13; a clozapine-like atypical antipsychotic developed by Liégeois et al. These compounds have been synthesized and characterized by means of elemental analysis, IR, 1H and 13C-NMR spectroscopy, MS and X-ray diffraction. Compound (I) crystallizes in space group P(?1) with a = 10.5032(1), b = 10.6261(2), c = 12.6214(3) Å, α = 81.432(1)°, β = 83.292(1)°, γ = 61.604(1)°, Z = 2, V = 1223.62(4) Å3, C28H29ClN4O, M r = 473.00, D c = 1.284 Mg/m3, μ = 0.185 mm?1, F(000) = 500, R = 0.0506 and wR = 0.1304. Compound (II) crystallizes in the monoclinic space group P21/c with a = 10.8212(2), b = 9.3592(2), c = 22.9494(5) Å, β = 106.471(1)°, Z = 4, V = 2228.88(8) Å3, C25H25ClN4O2, M r = 448.94, D c = 1.338 Mg/m3, μ = 0.202 mm?1, F(000) = 944, R = 0.0529 and wR = 0.1129. Compound (III) crystallizes in the monoclinic space group P21/c with a = 10.5174(2), b = 9.3112(2), c = 24.2949(5) Å, β = 98.666(1)°, Z = 4, V = 2352.03(8) Å3, C25H24Cl2N4O2, M r = 483.38, D c = 1.365 Mg/m3, μ = 0.306 mm?1, F(000) = 1008, R = 0.0478 and wR = 0.1067. The solid state conformations of (I), (II) and (III) exhibit the characteristic V-shaped buckled nature of the respective dibenzodiazepine and pyridobenzoxazepine nuclei with the central seven-membered heterocycle in a boat conformation. The molecules of (I) form a head-to-tail dimeric motif stabilized by hydrogen bonding. The results of a conformational analysis of compounds (I)–(III) investigating the effect of environment (in vacuo and aqueous solution) are presented. These analogues were tested for in vitro affinity for the dopamine D4 and serotonin 5-HT2A receptors and their comparative receptor binding profiles to clozapine and JL13 are reported.  相似文献   

17.
The enthalpies of sublimation Δsub H 0(298) of 4f metal trichlorides were calculated by the second and third laws of thermodynamics from saturated vapor pressures using the thermodynamic functions of the condensed and gaseous states suggested by us. The set of the Δsub H o(298) enthalpies was analyzed to determine the most reliable values. The enthalpies of atomization found from these values were compared with those calculated from the measured equilibrium constants of gas phase reactions with the participation of the compounds under consideration and the enthalpies of atomization found from the experimental appearance potentials AP(Ln+/LnCl3). Recommended Δat H o(298) values were obtained for all the 4f metal trichlorides.  相似文献   

18.
The heat capacity and the temperatures and enthalpies of physical transformations of the alternating terpolymer of carbon monoxide, ethylene, and 1-butene (the content of butene units is 10.7 mol.%) were studied by adiabatic and differential scanning calorimetry in the temperature range from 6 to 520 K. The energy of terpolymer combustion was measured at 298.15 K on an calorimeter with an isothermal shell and static bomb. The standard thermodynamic functions C°p(T), H°(T)–H°(0), S°(T)–S°(0), and G°(T)–H°(0) for the range from Т → 0 to 400 K, the standard enthalpy of combustion, and the thermodynamic parameters of formation of the partially crystalline CO—ethylene—1-butene terpolymer at 298.15 K, as well as the thermodynamic characteristics of its synthesis in the range from T → 0 to 400 K were calculated.  相似文献   

19.
The crystal structures of four organoselenium compounds, viz. bis(2-formylphenyl)diselenide (5), bis(2-methylnaphthyl)diselenide (6), organoselenenyl sulfide (7), and spiroselenurane (8) are described. Crystal data for 5: space group Pca21, crystal system orthorhombic, a=7.9969(4) Å, b=20.8794(12) Å, c=15.8307(13) Å, Z=8, R=0.0292. Owing to the presence of a strong Se···O interaction in compound 5 the geometry around the selenium atom may be considered as T-shaped. Crystal data for 6: space group Pna21, crystal system orthorhombic, a=18.2253(12) Å, b=13.0714(8) Å, c=7.7355(5) Å, Z=4, R=0.0570. The molecule has a cisoid conformation. Crystal data for 7: space group Pbcn, crystal system orthorhombic, a=22.2144(13) Å, b=8.0255(4) Å, c=15.4496(9) Å, Z=8, R=0.0292. Due to intramolecular Se···N interaction in 7 the geometry around selenium is T- shaped. Crystal data for 8: space group P21/c, crystal system monoclinic, a=7.4585(5) Å, b=19.5634(13) Å, c=8.0428(5) Å, β=97.1320(10)°, Z=4, R=0.0254. The O?Se?O angle is 172.86(6)°.  相似文献   

20.
Two series of water-soluble metalloporphyrin-cored amphiphilic star block copolymers were synthesized by controlled radical polymerizations such as atom transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer (RAFT), which gave eight amphiphilic block copolymer arm chains consisting of poly(n-butyl acrylate-b-poly(ethylene glycol) methyl ether methacylate) (PnBA-b-PEGMEMA, Mn,GPC = 78,000, Mw/Mn = 1.2, 70 wt% of PPEGMEMA) and poly(styrene-b-2-dimethylamino ethyl acrylate) (PS-b-PDMAEA, Mn,GPC = 83,000, Mw/Mn = 1.2, 67 wt% of PDMAEA), yielding porphyrin(Pd)-(PnBA-b-PPEGMEMA)8 and porphyrin(Pd)-(PS-b-PDMAEA)8, respectively. Obtained metalloporphyrin polymer photocatalysts were homogeneously solubilized in water to apply to the removal of chlorophenols in water, and was distinguished from conventional water-insoluble small molecular metalloporphyrin photocatalysts. Notably, we found that the water-soluble star block copolymers with hydrophobic–hydrophilic core–shell structures more effectively decomposed the chlorophenol, 2,4,6-trichlorophenol (2,4,6-TCP), in water under visible light irradiation (k = 1.39 h?1, t1/2 = 0.5 h) in comparison to the corresponding water-soluble star homopolymer, because the hydrophobic core near the metalloporphyrin effectively captured and decomposed the hydrophobic chlorophenols in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号