首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that the deterministic infinite trigonometric products
$$\begin{aligned} \prod _{n\in \mathbb {N}}\left[ 1- p +p\cos \left( \textstyle n^{-s}_{_{}}t\right) \right] =: {\text{ Cl }_{p;s}^{}}(t) \end{aligned}$$
with parameters \( p\in (0,1]\ \& \ s>\frac{1}{2}\), and variable \(t\in \mathbb {R}\), are inverse Fourier transforms of the probability distributions for certain random series \(\Omega _{p}^\zeta (s)\) taking values in the real \(\omega \) line; i.e. the \({\text{ Cl }_{p;s}^{}}(t)\) are characteristic functions of the \(\Omega _{p}^\zeta (s)\). The special case \(p=1=s\) yields the familiar random harmonic series, while in general \(\Omega _{p}^\zeta (s)\) is a “random Riemann-\(\zeta \) function,” a notion which will be explained and illustrated—and connected to the Riemann hypothesis. It will be shown that \(\Omega _{p}^\zeta (s)\) is a very regular random variable, having a probability density function (PDF) on the \(\omega \) line which is a Schwartz function. More precisely, an elementary proof is given that there exists some \(K_{p;s}^{}>0\), and a function \(F_{p;s}^{}(|t|)\) bounded by \(|F_{p;s}^{}(|t|)|\!\le \! \exp \big (K_{p;s}^{} |t|^{1/(s+1)})\), and \(C_{p;s}^{}\!:=\!-\frac{1}{s}\int _0^\infty \ln |{1-p+p\cos \xi }|\frac{1}{\xi ^{1+1/s}}\mathrm{{d}}\xi \), such that
$$\begin{aligned} \forall \,t\in \mathbb {R}:\quad {\text{ Cl }_{p;s}^{}}(t) = \exp \bigl ({- C_{p;s}^{} \,|t|^{1/s}\bigr )F_{p;s}^{}(|t|)}; \end{aligned}$$
the regularity of \(\Omega _{p}^\zeta (s)\) follows. Incidentally, this theorem confirms a surmise by Benoit Cloitre, that \(\ln {\text{ Cl }_{{{1}/{3}};2}^{}}(t) \sim -C\sqrt{t}\; \left( t\rightarrow \infty \right) \) for some \(C>0\). Graphical evidence suggests that \({\text{ Cl }_{{{1}/{3}};2}^{}}(t)\) is an empirically unpredictable (chaotic) function of t. This is reflected in the rich structure of the pertinent PDF (the Fourier transform of \({\text{ Cl }_{{{1}/{3}};2}^{}}\)), and illustrated by random sampling of the Riemann-\(\zeta \) walks, whose branching rules allow the build-up of fractal-like structures.
  相似文献   

2.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

3.
We prove the topological expansion for the cubic log–gas partition function
$$\begin{aligned} Z_N(t)= \int _\Gamma \cdots \int _\Gamma \prod _{1\le j<k\le N}(z_j-z_k)^2 \prod _{k=1}^Ne^{-N\left( -\frac{z^3}{3}+tz\right) }\mathrm{dz}_1\cdots \mathrm{dz}_N, \end{aligned}$$
where t is a complex parameter and \(\Gamma \) is an unbounded contour on the complex plane extending from \(e^{\pi \mathrm{i}}\infty \) to \(e^{\pi \mathrm{i}/3}\infty \). The complex cubic log–gas model exhibits two phase regions on the complex t-plane, with one cut and two cuts, separated by analytic critical arcs of the two types of phase transition: split of a cut and birth of a cut. The common point of the critical arcs is a tricritical point of the Painlevé I type. In the present paper we prove the topological expansion for \(\log Z_N(t)\) in the one-cut phase region. The proof is based on the Riemann–Hilbert approach to semiclassical asymptotic expansions for the associated orthogonal polynomials and the theory of S-curves and quadratic differentials.
  相似文献   

4.
We consider two ensembles of \(0-1\) \(n\times n\) matrices. The first is the set of all \(n\times n\) matrices with entries zeroes and ones such that all column sums and all row sums equal r, uniformly weighted. The second is the set of \(n \times n\) matrices with zero and one entries where the probability that any given entry is one is r / n, the probabilities of the set of individual entries being i.i.d.’s. Calling the two expectation values E and \(E_B\) respectively, we develop a formal relation
$$\begin{aligned} E({{\mathrm{perm}}}(A)) = E_B({{\mathrm{perm}}}(A)) e^{\sum _2 T_i}.\quad \quad \quad \quad \mathrm{(A1)} \end{aligned}$$
We use two well-known approximating ensembles to E, \(E_1\) and \(E_2\). Replacing E by either \(E_1\) or \(E_2\) we can evaluate all terms in (A1). For either \(E_1\) or \(E_2\) the terms \(T_i\) have amazing properties. We conjecture that all these properties hold also for E. We carry through a similar development treating \(E({{\mathrm{perm}}}_m(A))\), with m proportional to n, in place of \(E({{\mathrm{perm}}}(A))\).
  相似文献   

5.
For the Ising model (with interaction constant J>0) on the Cayley tree of order k≥2 it is known that for the temperature TT c,k =J/arctan?(1/k) the limiting Gibbs measure is unique, and for T<T c,k there are uncountably many extreme Gibbs measures. In the Letter we show that if \(T\in(T_{c,\sqrt{k}}, T_{c,k_{0}})\), with \(\sqrt{k} then there is a new uncountable set \({\mathcal{G}}_{k,k_{0}}\) of Gibbs measures. Moreover \({\mathcal{G}}_{k,k_{0}}\ne {\mathcal{G}}_{k,k'_{0}}\), for k 0k0. Therefore if \(T\in (T_{c,\sqrt{k}}, T_{c,\sqrt{k}+1})\), \(T_{c,\sqrt{k}+1} then the set of limiting Gibbs measures of the Ising model contains the set {known Gibbs measures}\(\cup(\bigcup_{k_{0}:\sqrt{k}.  相似文献   

6.
In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms \(Q=3\beta H_{0}\rho _\mathrm{{de}}\), \(Q=3\beta H_{0}\rho _\mathrm{{c}}\), \(Q=3\beta H_{0}(\rho _\mathrm{{de}}+\rho _\mathrm{c})\), \(Q=3\beta H_{0}\sqrt{\rho _\mathrm{{de}}\rho _\mathrm{c}}\), and \(Q=3\beta H_{0}\frac{\rho _\mathrm{{de}}\rho _{c}}{\rho _\mathrm{{de}}+\rho _\mathrm{c}}\), respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of \(\chi _\mathrm{min}^2\) for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter H is also made.  相似文献   

7.
It is well known that, an energy is in the spectrum of Fibonacci Hamiltonian if and only if the corresponding trace orbit is bounded. However, it is not known whether the same result holds for the Thue–Morse Hamiltonian. In this paper, we give a negative answer to this question. More precisely, we construct two subsets \(\Sigma _{II}\) and \(\Sigma _{III}\) of the spectrum of the Thue–Morse Hamiltonian, both of which are dense and uncountable, such that each energy in \(\Sigma _{II}\cup \Sigma _{III}\) corresponds to an unbounded trace orbit. Exact estimates on the norm of the transfer matrices are also obtained for these energies: for \(E\in \Sigma _{II}\cup \Sigma _{III}, \) the norms of the transfer matrices behave like
$$\begin{aligned} e^{c_1\gamma \sqrt{n}}\le \Vert T_{ n}(E)\Vert \le e^{c_2\gamma \sqrt{n}}. \end{aligned}$$
However, two types of energies are quite different in the sense that each energy in \(\Sigma _{II}\) is associated with a two-sided pseudo-localized state, while each energy in \(\Sigma _{III}\) is associated with a one-sided pseudo-localized state. The difference is also reflected by the local dimensions of the spectral measure: the local dimension is 0 for energies in \(\Sigma _{II}\) and is larger than 1 for energies in \(\Sigma _{III}.\) As a comparison, we mention another known countable dense subset \(\Sigma _I\). Each energy in \(\Sigma _I\) corresponds to an eventually constant trace map and the associated eigenvector is an extended state. In summary, the Thue–Morse Hamiltonian exhibits “mixed spectral nature”.
  相似文献   

8.
In 2002, two neutrino mixing ansatze having trimaximally mixed middle (\(\nu _2\)) columns, namely tri-chi-maximal mixing (\(\text {T}\chi \text {M}\)) and tri-phi-maximal mixing (\(\text {T}\phi \text {M}\)), were proposed. In 2012, it was shown that \(\text {T}\chi \text {M}\) with \(\chi =\pm \,\frac{\pi }{16}\) as well as \(\text {T}\phi \text {M}\) with \(\phi = \pm \,\frac{\pi }{16}\) leads to the solution, \(\sin ^2 \theta _{13} = \frac{2}{3} \sin ^2 \frac{\pi }{16}\), consistent with the latest measurements of the reactor mixing angle, \(\theta _{13}\). To obtain \(\text {T}\chi \text {M}_{(\chi =\pm \,\frac{\pi }{16})}\) and \(\text {T}\phi \text {M}_{(\phi =\pm \,\frac{\pi }{16})}\), the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, \(m_1:m_2:m_3=\frac{\left( 2+\sqrt{2}\right) }{1+\sqrt{2(2+\sqrt{2})}}:1:\frac{\left( 2+\sqrt{2}\right) }{-1+\sqrt{2(2+\sqrt{2})}}\). In this paper we construct a flavour model based on the discrete group \(\varSigma (72\times 3)\) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric \(3\times 3\) matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of \(\varSigma (72\times 3)\). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.  相似文献   

9.
We classify multidimensionally consistent maps given by (formal or convergent) series of the following kind:
$$\begin{aligned} T_k x_{ij}=x_{ij} + \sum _{m=2}^\infty A_{ij ; \, k}^{(m)}(x_{ij},x_{ik},x_{jk}), \end{aligned}$$
where \(A_{ij;\, k}^{(m)}\) are homogeneous polynomials of degree m of their respective arguments. The result of our classification is that the only non-trivial multidimensionally consistent map in this class is given by the well-known symmetric discrete Darboux system
$$\begin{aligned} T_k x_{ij}=\frac{x_{ij}+x_{ik}x_{jk}}{\sqrt{1-x_{ik}^2}\sqrt{1-x_{jk}^2}}. \end{aligned}$$
  相似文献   

10.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

11.
We consider the scattering of kinks of the sinh-deformed \(\varphi ^4\) model, which is obtained from the well-known \(\varphi ^4\) model by means of the deformation procedure. Depending on the initial velocity \(v_\mathrm {in}\) of the colliding kinks, different collision scenarios are realized. There is a critical value \(v_\mathrm {cr}\) of the initial velocity, which separates the regime of reflection (at \(v_\mathrm {in}>v_\mathrm {cr}\)) and that of a complicated interaction (at \(v_\mathrm {in}<v_\mathrm {cr}\)) with kinks’ capture and escape windows. Besides that, at \(v_\mathrm {in}\) below \(v_\mathrm {cr}\) we observe the formation of a bound state of two oscillons, as well as their escape at some values of \(v_\mathrm {in}\).  相似文献   

12.
In earlier papers, we have studied the turbulent flow exponents \(\zeta _p\), where \(\langle |\Delta \mathbf{v}|^p\rangle \sim \ell ^{\zeta _p}\) and \(\Delta \mathbf{v}\) is the contribution to the fluid velocity at small scale \(\ell \). Using ideas of non-equilibrium statistical mechanics we have found
$$\begin{aligned} \zeta _p={p\over 3}-{1\over \ln \kappa }\ln \Gamma \left( {p\over 3}+1\right) \end{aligned}$$
where \(1/\ln \kappa \) is experimentally \(\approx \,0.32\,\pm \,0.01\). The purpose of the present note is to propose a somewhat more physical derivation of the formula for \(\zeta _p\). We also present an estimate \(\approx \,100\) for the Reynolds number at the onset of turbulence.
  相似文献   

13.
We study minimizers of the pseudo-relativistic Hartree functional \({\mathcal {E}}_{a}(u):=\Vert (-\varDelta +m^{2})^{1/4}u\Vert _{L^{2}}^{2}+\int _{{\mathbb {R}}^{3}}V(x)|u(x)|^{2}\mathrm{d}x-\frac{a}{2}\int _{{\mathbb {R}}^{3}}(\left| \cdot \right| ^{-1}\star |u|^{2})(x)|u(x)|^{2}\mathrm{d}x\) under the mass constraint \(\int _{{\mathbb {R}}^3}|u(x)|^2\mathrm{d}x=1\). Here \(m>0\) is the mass of particles and \(V\ge 0\) is an external potential. We prove that minimizers exist if and only if a satisfies \(0\le a<a^{*}\), and there is no minimizer if \(a\ge a^*\), where \(a^*\) is called the Chandrasekhar limit. When a approaches \(a^*\) from below, the blow-up behavior of minimizers is derived under some general external potentials V. Here we consider three cases of V: trapping potential, i.e. \(V\in L_{\mathrm{loc}}^{\infty }({\mathbb {R}}^3)\) satisfies \(\lim _{|x|\rightarrow \infty }V(x)=\infty \); periodic potential, i.e. \(V\in C({\mathbb {R}}^3)\) satisfies \(V(x+z)=V(x)\) for all \(z\in \mathbb {Z}^3\); and ring-shaped potential, e.g. \( V(x)=||x|-1|^p\) for some \(p>0\).  相似文献   

14.
A matrix is called totally positive (resp. totally nonnegative) if all its minors are positive (resp. nonnegative). Consider the Ising model with free boundary conditions and no external field on a planar graph G. Let \(a_1,\dots ,a_k,b_k,\dots ,b_1\) be vertices placed in a counterclockwise order on the outer face of G. We show that the \(k\times k\) matrix of the two-point spin correlation functions
$$\begin{aligned} M_{i,j} = \langle \sigma _{a_i} \sigma _{b_j} \rangle \end{aligned}$$
is totally nonnegative. Moreover, \(\det M > 0\) if and only if there exist k pairwise vertex-disjoint paths that connect \(a_i\) with \(b_i\). We also compute the scaling limit at criticality of the probability that there are k parallel and disjoint connections between \(a_i\) and \(b_i\) in the double random current model. Our results are based on a new distributional relation between double random currents and random alternating flows of Talaska [37].
  相似文献   

15.
We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in \(\mathbb {P}^{n+2}\) satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension \(n+2\), classify n-tuples of skew-symmetric 2-forms \(A^{\alpha } \in \varLambda ^2(W)\) such that
$$\begin{aligned} \phi _{\beta \gamma }A^{\beta }\wedge A^{\gamma }=0, \end{aligned}$$
for some non-degenerate symmetric \(\phi \).
  相似文献   

16.
We show that in homogeneous fragmentation processes the largest fragment at time t has size
$$\begin{aligned} e^{-t \Phi '(\overline{p})}t^{-\frac{3}{2} (\log \Phi )'(\overline{p})+o(1)}, \end{aligned}$$
where \(\Phi \) is the Lévy exponent of the fragmentation process, and \(\overline{p}\) is the unique solution of the equation \((\log \Phi )'(\bar{p})=\frac{1}{1+\bar{p}}\). We argue that this result is in line with predictions arising from the classification of homogeneous fragmentation processes as logarithmically correlated random fields.
  相似文献   

17.
Considering the mass, parity and \(D^0 p\) decay mode, we tentatively assign the \(\Lambda _c(2940)\) as the \(P-\)wave states with one radial excitation. Then, via studying the strong decay behavior of the \(\Lambda _c(2940)\) within the \(^3P_0\) model, we obtain that the total decay widths of the \(\Lambda _{c1}(\frac{1}{2}^-,2P)\) and \(\Lambda _{c1}(\frac{3}{2}^-,2P)\) states are 16.27 and 25.39 MeV, respectively. Compared with the experimental total width \(27.7^{+8.2}_{-6.0}\pm 0.9^{+5.2}_{-10.4}~\mathrm {MeV}\) measured by LHCb Collaboration, both assignments are allowed, and the \(J^P=\frac{3}{2}^-\) assignment is more favorable. Other \(\lambda \)-mode \(\Sigma _c(2P)\) states are also investigated, which are most likely to be narrow states and have good potential to be observed in future experiments.  相似文献   

18.
We consider the X(3872) resonance as a \(J^\mathrm{{PC}}=1^{++}\) \(D\bar{D}^*\) hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers \(2^{++}\), \(X_{2}\), which would be a \(D^*\bar{D}^*\) loosely bound state. The \(X_{2}\) is expected to decay dominantly into \(D\bar{D}\), \(D\bar{D}^*\) and \(\bar{D} D^*\) in d-wave. In this work, we calculate the decay widths of the \(X_{2}\) resonance into the above channels, as well as those of its bottom partner, \(X_{b2}\), the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the \(X_{2}\) and \(X_{b2}\) of the order of a few MeV. Finally, we also study the radiative \(X_2\rightarrow D\bar{D}^{*}\gamma \) and \(X_{b2} \rightarrow \bar{B} B^{*}\gamma \) decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the \(D\bar{D}^{*}\) or \(B\bar{B}^{*}\) final state interaction.  相似文献   

19.
Quantum analogue of stabilised forced oscillations around an unstable equilibrium position is explored by solving the non-stationary Schrödinger equation (NSE) of the inverted harmonic oscillator (IHO) driven periodically by spatial uniform field of frequency \(\Omega \), amplitude \(F_{0}\) and phase \(\phi \), i.e. the system with the Hamiltonian of \(\hat{{H}}=(\hat{{p}}^{2}/2m)-(m\omega ^{2}x^{2}/2)-F_0 x\sin \) \(\left( {\Omega t+\phi } \right) \). The NSE has been solved both analytically and numerically by Maple 15 in dimensionless variables \(\xi = x\sqrt{m\omega /\hbar }\hbox {, }f_0 =F_0 /\omega \sqrt{\hbar m\omega }\) and \(\tau =\omega t\). The initial condition (IC) has been specified by the wave function (w.f.) of a generalised Gaussian type which suits well the corresponding quantum IC operator. The solution obtained demonstrates the non-monotonous behaviour of the coordinate spreading \(\sigma \left( \tau \right) \hbox { =}\sqrt{\big ( {\overline{\Delta \xi ^{2}\big ( \tau \big )} } \big )}\) which decreases first from quite macroscopic values of \(\sigma _{0} =2^{12,\ldots ,25}\) to minimal one of \(\sim \!(1/\sqrt{2})\) at times \(\tau <\tau _0 =0.125\ln \!\left( {16\sigma _0^4 +1} \right) \) and then grows back unlimitedly. For certain phases \(\phi \) depending on the \(\Omega /\omega \) ratio and \(n=\log _2\!\sigma _0 \), the mass centre of the packet \(\xi _{\mathrm {av}}( \tau )= \overline{\hat{{x}}(\tau )} \cdot \sqrt{m\omega /\hbar }\) delays approximately two natural ‘periods’ \(\sim \!(4\pi /\omega )\) in the area of the stationary point and then escapes to ‘\(+\)’ or ‘?’ infinity in a bifurcating way.  For ‘resonant’ \(\Omega =\omega \), the bifurcation phases \(\phi \) fit well with the regression formula of Fermi–Dirac type of argument n with their asymptotic \(\phi ( {\Omega ,n\rightarrow \infty } )\) obeying the classical formula \(\phi _{\mathrm {cl}} ( \Omega )=-\hbox {arctg} \, \Omega \) for initial energy \(E = 0\) in the wide range of \(\Omega =2^{-4},...,2^{7}\).  相似文献   

20.
We consider the half-wave maps equation
$$\begin{aligned} \partial _t \vec {S} = \vec {S} \wedge |\nabla | \vec {S}, \end{aligned}$$
where \(\vec {S}= \vec {S}(t,x)\) takes values on the two-dimensional unit sphere \(\mathbb {S}^2\) and \(x \in \mathbb {R}\) (real line case) or \(x \in \mathbb {T}\) (periodic case). This an energy-critical Hamiltonian evolution equation recently introduced in Lenzmann and Schikorra (2017, arXiv:1702.05995v2), Zhou and Stone (Phys Lett A 379:2817–2825, 2015) which formally arises as an effective evolution equation in the classical and continuum limit of Haldane–Shastry quantum spin chains. We prove that the half-wave maps equation admits a Lax pair and we discuss some analytic consequences of this finding. As a variant of our arguments, we also obtain a Lax pair for the half-wave maps equation with target \(\mathbb {H}^2\) (hyperbolic plane).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号