首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinetics of anation of chromium(III) species, [Cr(H2O)6]4+ and [Cr(H2O)5OH]2+, by L-phenylalanine in aqueous acid has been studied spectrophotometrically. Effects of varying [substrate], [ligand], [H+], , % ethanol and temperature were investigated. The kinetic data suggest a mechanism where outersphere-associations [between chromium(III) species and phenylalanine in the zwitterionic form] precede anation. Comparison of the results with published data suggest an Ia path for the [Cr(H2O)6]3+ reaction and Id path for the [Cr(H2O)5OH]2+ reaction.  相似文献   

2.
Summary The kinetics of complex formation between aquachromium(III) ions and L-iso-leucine have been studied spectrophotometrically. Effects of varying the total chromium(III), total amino acid and H+ concentrations, ionic-strength, temperature and % EtOH on the kohs were determined. The results are best accounted for by outer-sphere complexation equilibria involving HL (the amino acid zwitterion) and [Cr(H2O)6]3+/[Cr(H2O)5OH]2+ which precede anations. A rate-equation is established which involves Kos1, Kos2, k1, k2 (the respective outer-sphere complexation and interchange rate constants with [Cr(H2O)6]3+ and [Cr(H2O)5OH]2+), Ka and Kh (the acid-dissociation constants of H2L+HL and [Cr(H2O)6]3+ [Cr(H2O)5OH]2+ pairs). The proposed mechanism is Ia for the path involving hexaaqua- and Id for that involving hydroxopentaaquachromium(III).  相似文献   

3.
Kinetics and mechanism of the cerium(IV) oxidation of Cr(III) complexes of a series of macrocyclic (or pseudomacrocyclic) ligands with [14]-membered intraligand ring-sizes have now been investigated at I = 1.0 M (LiClO4) Temp. 30°C. The complexes of the formulation Cr(macrocycle)(X)(H2O) where X = CHCl2 and H2O, n = 0 or 1 undergo oxidation to Cr(VI) with the formation of chromium(IV) intermediates. The observed kinetic parameters for the Ce(IV) oxidation of Cr(III) macrocyclic complexes have been discussed in terms of changes brought about by the macrocyclic ligands on the Cr(III)—Cr(IV) redox potentials and in specific rates for Cr(IV)—Cr(V) conversion. On the basis of this study, it has been suggested that the trapping of Cr(IV) is easier when a macrocyclic ligand having a symmetrical intra-ligand ring size and unsaturation in the cyclic structure is coordinated equatorially. Cyclic voltammetric studies indicate the formation of Cr(IV) transient in the case of electrochemical oxidation of trans-Cr(Me4[14]tetraene)(H2O).  相似文献   

4.
The kinetics of ruthenium(III) catalyzed oxidation of L-proline by diperiodatocuprate(III) (DPC) in alkaline medium at constant ionic strength (0.10 mol dm−3) has been studied spectrophotometrically using a rapid kinetic accessory. The reaction showed first order kinetics in [DPC] and [RuIII] and apparently less than unit order dependence each in L-proline and alkali concentrations. A mechanism involving the formation of a complex between the L-proline and the hydroxylated species of ruthenium (III) has been proposed. The active species of oxidant and catalyst were [Cu(OH)2 (H3IO6)2 (H2IO6)2]4− and [Ru (H2O)5OH]2+ respectively. The reaction constants involved in the mechanism were evaluated. The activation parameters were computed with respect to the slow step of the mechanism and discussed. The text was submitted by the authors in English.  相似文献   

5.
The kinetics of oxidation of diaquadichloro(1,10-phenanthroline)chromium(III) complex, [CrIII(phen)(H2O)2Cl2]+, by N-bromosuccinimide (NBS) is biphasic. The first faster step involves the oxidation of Cr(III) to Cr(IV). The second slower step is due to the oxidation of Cr(IV) to Cr(V). The reaction product is isolated and characterized by electron spin resonance (ESR), IR, and elemental analysis. The chromium(V) product is consistent with the formula [CrV(phen)Cl2(O)]Br. The rate constants kf and ks, for the faster and the slower steps respectively, were obtained using an Origin 9.0 software program. Values of both kf and ks, varied linearly with [NBS] at constant reaction conditions. The effect of pH on the reaction rate is investigated over the pH (4.11–6.01) range at 25.0°C. The rate constants kf and ks increased with increasing pH. This is consistent with hydroxo forms of the chromium species being more reactive than the aqua forms. Chromium(III) complexes, more often than not, are inert. The oxidation of the Cr(III) complex to Cr(IV), most likely, proceeds by an outer sphere mechanism. Since chromium(IV) is labile the mechanism of its oxidation to chromium(V) is not certain.  相似文献   

6.
The oxidation of cis‐diaquabis(1,10‐phenanthroline)chromium(III) [cis‐CrIII(phen)2(H2O)2]3+ by ‐bromosuccinimide (NBS) to yield cis‐dioxobis(1,10‐phenanthroline)chromium(V) has been studied spectrophotometrically in the pH 1.57–3.56 and 5.68–6.68 ranges at 25.0°C. The reaction displayed biphasic kinetics at pH < 4.0 and a simple first order at the pH > 5.0. In the low pH range, the reaction proceeds by two successive steps; the first faster step corresponds to the oxidation of Cr(III) to Cr(IV), and the second slower one corresponds to the oxidation of Cr(IV) to Cr(V), the final product of the reaction. The formation of both Cr(IV) and Cr(V) has been detected by electron spin resonance (ESR). The ESR clearly showed the formation and decay of Cr(IV) as well as the formation of Cr(V). Each oxidation process exhibited a first‐order dependence on the initial [Cr(III)]. The pseudo–first‐order rate constants k34 and k45, for the faster and slower steps, respectively, were obtained by a computer program using Origin7.0. Both rate constants showed first‐order dependence on [NBS] and increased with increasing pH.  相似文献   

7.
The kinetics of oxidation of the chromium(III) complexes, [Cr(Ino)(H2O)5]3+ and [Cr(Ino)(Gly)(H2O)3]2+ (Ino?=?Inosine and Gly?=?Glycine) involving a ligands of biological significance by N-bromosuccinimide (NBS) in aqueous solution to chromium(VI) have been studied spectrophotometrically over the 25–45°C range. The reaction is first order with respect to both [NBS] and [Cr], and increases with pH over the 6.64–7.73 range in both cases. The experimental rate law is consistent with a mechanism in which the hydroxy complexes [Cr(Ino)(H2O)4(OH)]2+ and [Cr(Ino)(Gly)(H2O)2(OH)]+ are significantly more reactive than their conjugate acids. The value of the intramolecular electron transfer rate constant, k 1, for the oxidation of the [Cr(Ino)(H2O)5]3+ (6.90?×?10?4?s?1) is lower than the value of k 2 (9.66?×?10?2?s?1) for the oxidation of [Cr(Ino)(Gly)(H2O)2]2+ at 35°C and I?=?0.2?mol?dm?3. The activation parameters have been calculated. Electron transfer apparently takes place via an inner-sphere mechanism.  相似文献   

8.
Photosubstitution by OH? ligand was concluded from a photochemical study of the [Cr(CN)6]3? and [Cr(CN)5OH]3? complexes in alkaline medium. Photoaccelerated aquation was found to proceed in the case of aquocyanochromates(III): [Cr(CN)5H2O]2? and [Cr(CN)3(H2O)3].  相似文献   

9.
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH] and decreased with an increase in [IO4] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.  相似文献   

10.
Reactions of 2-(L-carboxyl-2-hydroxyphenyl)thiazolidine with different chromium(III) salts [CrCl3?·?6H2O, K3[Cr(SCN)6], NH4[Cr(NH3)2(SCN)4]?·?H2O, [Cr(urea)6]Cl3?·?3H2O and [Cr(CH3COO)2H2O]2] under varied reaction conditions afforded many new mixed-ligand chromium(III) complexes. The ligand is a tridentate dibasic NSO donor except for complexes 1 and 4 where two moles of the ligand are present for each molecule of complex, one functioning as a dibasic tridentate (NSO) and the other as a monobasic bidentate (NS) (phenolic OH and carboxylic COOH groups remaining uncoordinated). The complexes have been characterized by elemental analyses, magnetic susceptibilities, molar conductances, molecular weights and spectroscopic (IR, Uv-vis) data. The ligand field parameters and NSH Hamiltonian parameters suggest tetragonal geometries of the complexes.  相似文献   

11.
The yields of tris(2,4-pentanedionato)chrvmium(III) (Cr(acac)3) formed in the presence of either the ammonia (Am), ethanoate (ET), trichloroethanoate (TCE), or trifluoroethanoate (TFE) ligand in high pH aqueous solution, were compared with those from a medium containing only hydroxyl and water as the principal ligands besides the acac. The presence of Am, ET, and TCE drastically reduced the yields at pH’s 9.5–10.5, 7.5–9.0/9.5–11.0, and 9.0–12.0, respectively in increasing order ET > Am < TCE. The role of Am is attributed mainly to the oxo-bridged species ((OH)m(H2O)nAm5-(m+n)Cr(O)(OH)CrAm5-(m+n)(H2O)n(OH)m)3-2m (1), ((OH)m(H2O)nAm5-(m+n)Cr(O)2CrAm5-(m+n)(H2O)n(OH)m)2-2m (2), and ((OH)m(H2O)nAm5-(m+n)Cr(O)(OH)CrAm4(m+n)(H2O)n(OH)m+1)2-2m (3). 2 is the most deactivating species mainly on the basis that the Cr-O bond of the oxo-bridge is suggested as being stronger than the Cr-O bond of the hydroxo-bridge. As for ET and TCE, oxo-bridged polymeric ethanoato- and trichloroethanoatochromium(III) species are also proposed as the main origin of the drastic deactivation of the reaction not observed for TFE due possibly, to the insignificance of oxo-bridges in tnfluoroethanoatochromium(III) species.  相似文献   

12.
Substitution reactions take place following the photonic excitation of aqueous K4M(CN)8 (where M = Mo or W) in the presence of 1,10-phenanthroline and 2,2-?bipyridyl. Changes in absorbance with time show that the overall reaction is dependent on photochemical activation of potassium octacyanomolybdate(IV) and -tungstate(IV). The species [K2Mo(CN)4(OH)2(phen)], [K2W(CN)4(OH)2(phen)], [K2Mo(CN)4(OH)2(bipy)] and [K2W(CN)4(OH)2(bipy)] exist in solution. The final photosubstitution products [Mo(OH)3(CN)(phen)2] · 2H2O], [Mo(OH)3(CN)(bipy)2] · 3H2O, [W(OH)3(CN)(phen)2] · 2H2O and [W(OH)3(CN)(bipy)2] · H2O have been isolated in the solid state. Their IR spectra have been discussed. The quantum yield of the photosubstitution reactions has been determined and its variation with change of concentration of the complex as well as the H+ ion concentration has been studied.  相似文献   

13.
When HCrO4 ? is reduced by formate in solutions buffered by 2-ethyl-2-hydroxybutanoic acid and its anion, chelated complexes of both Cr(IV) and Cr(V), both of them stabilized in the medium used, are formed. It appears that Cr(V) is not generated directly from the Cr(VI)-formate reaction but arises instead from oxidation of Cr(IV) by Cr(VI). When the Cr(VI)-formate reaction is allowed to go to completion in the presence of [Cl(NH3)5Co]2+, a scavenger for Cr(II), 84–86% of the Cr(VI) taken is found to be converted to Cr(II), indicating that nearly all of the reacting system proceeds through Cr(IV) and bypasses the more usual state Cr(III). Initial rates for formation of Cr(IV) lead to a rate law pointing to a transition state containing the two redox partners, two ligating carboxyl groups, and two units of H+. Substitution of DCO2 ? for HCO2 ? retards formation of Cr(IV) by a factor of 3.3, whereas the solvent isotope affect, rateD 2O/rateH 2O, favors the deuterated system by a factor of 1.4. Our observations are in accord with a sequence initiated by the ligation of HCrO4 ? to a chelate derived from the buffering carboxylate anion. Conversions of Cr(VI) to Cr(IV), and Cr(IV) to Cr(II) appear to entail hydride shifts from formate to the Cr(=O) function.  相似文献   

14.
The oxidation of antimony(III) by cerium(IV) has been studied spectrometrically (stopped flow technique) in aqueous sulphuric acid medium. A minute amount of manganese(II) (10−5 mol dm−3) is sufficient to enhance the slow reaction between antimony(III) and cerium(IV). The stoichiometry is 1:2, i.e. one mole of antimony(III) requires two moles of cerium(IV). The reaction is first order in both cerium(IV) and manganese(II) concentrations. The order with respect to antimony(III) concentration is less than unity (ca 0.3). Increase in sulphuric acid concentration decreases the reaction rate. The added sulphate and bisulphate decreases the rate of reaction. The added products cerium(III) and antimony(V) did not have any significant effect on the reaction rate. The active species of oxidant, substrate and catalyst are Ce(SO4)2, [Sb(OH)(HSO4)]+ and [Mn(H2O)4]2+, respectively. The activation parameters were determined with respect to the slow step. Possible mechanisms are proposed and reaction constants involved have been determined.  相似文献   

15.
Summary The oxidation of aquaethylenediaminetetraacetatochromium(III) [Cr(HEDTA)(H2O)] with N-bromosuccinimide (NBS) to yield chromium(VI) has been studied spectrophotometrically over the 20–40° C range. The rate is first order with respect to both reactants and increases with decreasing [H+] between pH 6.0 and 6.8. The thermodynamic activation parameters were calculated. The experimental rate law is consistent with a mechanism in which the deprotonated [Cr(EDTA)(OH)]2- and protonated [Cr(EDTA)(H2O)]- are the reactive species. It is proposed that electron transfer proceeds via an inner sphere mechanism.Abstracted from the PhD thesis of Alaa El-Din M. Abdel-Hady.  相似文献   

16.
We report the synthesis, characterization, and reactivity of a Cr(II) complex, [Cr(H2O)(LISQ)2] (1) [(LISQ)1? is o-iminothionebenzosemiquinonate(1?) π-radical], that is highly stable in solid state in the presence of air but undergoes spontaneous change in solution, both in the presence and absence of air. Physicochemical studies in solution show that a superoxo-CrIII species, [Cr(O2)(OH)(LISQ)2]? is generated initially in DMF solution of 1 in the presence of air owing to its immediate deprotonation followed by O2 binding to the deprotonated species. The formation of this superoxo-CrIII species is prominent and gradual in the presence of CH3OH, a scavenger of CrO2+ species. This Cr(O2)2+ species in turn is converted to another highly reactive O=Cr(IV) intermediate [O=Cr(OH)(LISQ)2]? which undergoes disproportionation producing an unstable O=Cr(V) species, [O=Cr(OH)(LISQ)2] and a stable Cr(III) compound, [Cr(OH)(DMF)(LISQ)2] (2). The rate of this disproportionation is enhanced in the presence of MnCl2, [N(n-Bu)4]PF6 and KSCN. The generated O=Cr(IV) species interacts with DNA with complete cleavage. The O=Cr(V) species slowly disappears from solution as revealed from EPR studies.  相似文献   

17.
Summary In aqueous solutions, [Cr(en)3]3+ aquates to [Cr(en)2-(H2O) 2]3+. A kinetic study of the oxidation of [Cr(en)3]3+ by N-bromosuccinimide (NBS) in aqueous solutions and water-alcohol solvent mixtures was performed. The reaction is first order with respect to both total [CrIII] and [NBS]. The rate is inversely dependent upon [H+] in the 7.0–7.9 pH range, and varies with the co-solvent according to the order: MeOH > EtOH > PrOH. An appropriate mechanism, in which the deprotonated [Cr(en)2(OH)(H2O)]2+ is the reactive species, is suggested. Thermodynamic activation parameters have been calculated.Abstracted from the PhD thesis (Ain Shams University) of A. E.- D. M. Abdel-Hady.  相似文献   

18.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

19.
The kinetics of oxidation of N,N‐dimethylformamide by chromium(VI) has been studied spectrophotometrically in aqueous perchloric acid media at 20°C. The rate showed a first‐order dependence on both [Cr(VI)] and [DMF], and increased markedly with increasing [H+]. The order with respect to [HClO4] was found to lie between 1 and 2. The rate was found to be independent of ionic strength as well as of any inhibition effect of Mn(II). The formation of superoxochromium(III) ion was detected in an aerated solution of chromium(VI), DMF and HClO4. The proposed mechanism, involving two reaction pathways, leads to the rate law, rate = Ka1 [HCrO4] [DMF] (kI Ka2 [H+]²+kII[H+]). The first pathway, with rate constant kI, involves the formation of chromium(V) and a free radical. The second pathway, with rate constant kII, involves the formation of Cr(IV), CO2 and dimethylamine. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 409–415, 1999  相似文献   

20.
Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0.30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is understood as [Ru(H2O)5OH]2+. The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号