首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical cavity surface emitting laser (VCSEL) emitting at 850 nm plays more important role in local fiber communication. Most of the VCSEL products emitting at 850 nm are fabricated by ion implanting. Their threshold current is about 4–6 mA. Using tungsten wires as mask, we developed the parameter of implantation and fabricated 850 nm VCSEL under room temperature CW (continuous wave) operation. The threshold current was 1.4 mA, which was lower than that of most similar devices reported before. The resistance of the device was 206 Ω. The light power was 0.92 mW at 6.74 mA under room temperature CW operation, while the light power did not achieve obvious saturation. The most remarkable advantage was that the fabrication method was simple and the optimization was available to implanting parameter.  相似文献   

2.
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light emitting devices based on silicon nanostructures. The performances of crystalline, amorphous and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature EL with the advantage to be formed at a temperature of only 900 °C, remarkably lower than the temperature needed for the formation of Si nanocrystals (1100 °C or higher). To improve the extraction of the light, we coupled the emitting system with a 2D photonic crystal structure properly fabricated with ULSI technology to reduce the total internal reflection of the emitted light. We demonstrate that the extraction efficiency is increased by a factor of 4. Finally, the light emission from devices based on Er-doped Si nanoclusters has been studied and in particular we have investigated the luminescence quenching processes limiting quantum efficiency in these devices. In fact the carrier injection, that determines the excitation of Er ions through electron–hole recombination, at the same time produces an efficient non-radiative Auger de-excitation with trapped carriers. These data are presented and the implications on the device performances discussed.  相似文献   

3.
We report on the fabrication and performances of extremely efficient Si-based light sources. The devices consist of MOS structures with erbium (Er) implanted in the thin gate oxide. The devices exhibit strong 1.54 μm electroluminescence (EL) at 300 K with a 10% external quantum efficiency, comparable to that of standard light-emitting diodes using III–V semiconductors. Er excitation is caused by hot electrons impact and oxide wearout limits the reliability of the devices. Much more stable light-emitting MOS devices have been fabricated using Er-doped silicon rich oxide (SRO) films as gate dielectric. These devices show a high stability, with an external quantum efficiency reduced to 1%. In these devices, Er pumping occurs by energy transfer from the Si nanostructures to the rare-earth ions. Finally, we have also fabricated MOS structures with Tb- and Yb-doped SiO2 which show room temperature EL at 540 nm (Tb) and 980 nm (Yb) with an external quantum efficiency of a 10% and 0.1%, respectively.  相似文献   

4.
An As2S3 fiber coupled to an InGaAsSb photodiode was used to record the radiation distribution over the emitting surface in InGaAsSb episide-down-bonded negative luminescence devices (λ=3.9 μm). Emission spectra were recorded under forward and reverse bias and both were modulated by a Fabry–Perot resonator formed by the anode contact and emitting InAs surface in 45-μm thick diodes. The results show that the current/emission distribution crowds in the vicinity of the contact under forward bias, while a uniform current/emission distribution over the emitting surface is seen under reverse bias.  相似文献   

5.
Organic light emitting devices based on tris(8-hydroxyquinoline)aluminium (Alq3) doped with two fluorescent porphyrin derivatives, 5,15-diphenyl-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin and the corresponding zinc metalated one, were fabricated. As a consequence, the light emission changed, from standard green light from Alq3, to reddish and yellowish white respectively. The different spectral content in the two cases indicates a possible route to a white light emitter, based on several dopants from the same family of molecules with different central atoms. The turn-on voltage of the devices was not increased by the doping.  相似文献   

6.
We report on the fabrication and characterization of Si/SiO2 Fabry-Perot microcavities. These structures are used to enhance the external quantum efficiency along the cavity axis and the spectral purity of emission from silicon rich oxide films that are used as active media to fabricate a Si based RCLED (resonant cavity light emitting devices). A new structure to electrically pump the active media in the resonant cavity has been designed. These structures are fabricated by chemical vapour deposition on a silicon substrate. The microcavities are tuned at 850 nm and present a quality factor ranging from 17 to 150 depending on the number of pairs constituting the dielectric mirrors. An enhancement of the electro and photoluminescence (PL) signal of 20 times is achieved for the selected emission wavelength. These cavities are characterized by TEM analysis to evaluate film uniformity, thicknesses and the densification after annealing processes for temperature ranging from 800 to 1100 °C. The electrical properties of the active media are analyzed. The electroluminescence spectral features are compared with PL spectra correlated with the quality factor of the cavities. The photometric diagram shows also a high directionality of the emitted light within a 30° cone from the sample normal.  相似文献   

7.
Field-effect transistors consisting of poly(3-hexylthiophene) have been fabricated with high dielectric constant SrBi2Ta2O9 films working as the gate insulator. Significantly enhanced gate effects were observed in these devices compared to similar transistors with conventional SiO2 gate dielectric. Our devices exhibited operating voltages around 10 V, as compared to about 100 V for devices employing SiO2 as the gate dielectric. Moreover, inverters based on such polymer transistors were demonstrated with nice input–output characteristics. PACS 82.35.Cd  相似文献   

8.
Light emitting pn-diodes were fabricated on a 5.8 μm thick n-type Si device layer of a silicon-on-insulator (SOI) wafer using standard silicon technology and boron implantation. The thickness of the Si device layer was reduced to 1.3 μm, corresponding to a 4λ-cavity for λ=1150 nm light. Electroluminescence spectra of these low Q-factor microcavities are presented. Addition of Si/SiO2 Bragg reflectors on the top and bottom of the device (3.5 and 5.5 pairs, respectively) is predicted to lead to spectral emission enhancement by ∼270.  相似文献   

9.
Six tetraphenylporphyrins (TRPPH2) with different horizontal substituents R (R = H, CH3, OH, F, Cl, Br) were synthesized, and the organic light‐emitting diode (OLED) devices with a general configuration of ITO/TPD/Alq3:2%TRPPH2/Alq3/Al were prepared. The substituted TRPPH2 was used as the host dopant, 4,4‐bis‐(m‐tolyphenylamino)biphenyl (TPD) was used as a hole‐transporting material, and aluminum tris(8‐quinolinolato) (Alq3) was used as an electron‐transporting material. The electroluminescent (EL) properties of these devices were studied to understand the light emitting properties of the substituted TRPPH2. Previous studies have found that the color emitted by the devices was dependent on the TRPPH2 dye concentration. The electronic effect of the horizontal substituents R of TRPPH2 influenced the turn‐on voltage, brightness, and power efficiency of the devices. Also, the electroluminescence performance of the porphyrin‐doped OLED devices depended on the effectual overlaps between the emission of electron‐transporting material and the absorption of the dopants. This means that it is possible to evaluate the electroluminescence performance of the porphyrin‐doped OLED devices based on the emission of electron‐transporting material and the absorption of the dopants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
采用2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP): 5 wt.% cesium carbonate(Cs2CO3)和N, N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB): 20 wt.% molybdenum oxide(MoO3)分别作为器件的电子注入层和空穴注入层,研究了N型和P-i-N结构有机电致发光器件的载流子传输特性.载流子传输层中BCP: Cs2CO3和NPB:MoO3的引入有效增强了载流子注入能力,从而降低了器件的驱动电压.基于新型电荷生成层BCP: 5 wt.% Cs2CO3/ NPB: 20 wt.% MoO3制备了色稳定、高效率P-i-N结构有机叠层器件.与单元器件相比,引入新电荷生成层有机叠层器件的最大电流效率增大了2.5倍,表明该电荷生成层可以有效地将电子和空穴分别注入到相邻发光单元中.采用该电荷生成层制备了P-i-N结构白色有机叠层器件,器件的上下发光单元分别为橙光和蓝光发射.当发光亮度从500增加到5 000 cd/m2时,器件的色坐标稳定在(0.33, 0.29)附近,接近白光等能点.利用单色发光单元堆叠制备白色有机叠层器件的方法为实现色稳定、高效率的白色有机电致发光器件提供了一种有效的途径.  相似文献   

11.
With a blue distyrylarylene derivative, 4,4′-bis(2,2-di(2-methoxyphenyl)ethenyl)-1,1′-biphenyl (CBS) as emitting material, double-layer and triple-layer electroluminescent (EL) devices were fabricated. For the device using tris-(1-phenyl-3-methyl-4-isobutyryl-5-pyrozolone)-bis(triphenyl phosphine oxide) terbium (Tb(PMIP)3(TPPO)2) as the electron-transporting layer, blue EL emission with a maximum luminance of 253 cd/m2 was achieved at 19 V. The difference of Tb(PMIP)3(TPPO)2 and tris(8-hydroxyquinolinate)aluminum (AlQ) as the electron-transporting materials in these devices were compared and discussed.  相似文献   

12.
Tris-(8-hydroxyquinoline)aluminum (Alq3) is a widely used light emitting material. It is also used as an electron transporting layer in organic light emitting devices (OLEDs). Degradation is, however, a major problem in these devices. The device performance is affected by parameters such as air, moisture and light exposure [1,2]. In this work the effect of photon degradation of Alq3 in air is investigated. Alq3 phosphor powder was synthesized using a co-precipitation method and recrystalized in acetone. The structure of the sample was determined by using x-ray diffraction (XRD). The averaging particle size estimated from the broadened XRD peaks using Scherrer's equation was 40±4 nm in diameter. The excitation photoluminescence data that was collected correspond well to the absorption data. To study the photon degradation, the sample was irradiated with an UV lamp for ∼330h. The emission data was collected and the change in photoluminescence intensity with time was monitored.  相似文献   

13.
Organic light‐emitting diodes (OLEDs) are discussed for electro‐optical integrated devices that are used for optical signal transmission. Organic optical devices including polymeric optical fibers are used for optical communication applications to realize polymeric electro‐optical integrated devices. The OLEDs were fabricated by vacuum process, i.e. the organic molecular beam deposition (OMBD) technique or a solution process on a polymeric or a glass substrate, for comparison. Optical signals faster than 100 MHz have been created by applying pulsed voltage directly to the OLED utilizing rubrene doped in 8‐hydoxyquinolinum aluminum (Alq3), as an emissive layer. OLEDs fabricated by solution process utilizing rubrene doped in carrier‐transporting materials have also discussed. OLEDs utilizing polymeric materials by solution process are also fabricated and discussed. Moving‐picture signals are transmitted utilizing both vacuum‐ and solution‐processed OLEDs, respectively.  相似文献   

14.
一种新型有机电致微腔结构的双模发射   总被引:4,自引:4,他引:0  
采用结构Glass/DBR/ITO/NPB/NPB:Alq/Alq/Al制作了有机微腔电致发光器件。将空穴传输材料与发光材料以一定比例混合作为发光层,为了便于对比,在不改变有机层的膜厚的情况下同时制作了传统的异质结微腔器件,发现两种器件的发光光谱有很大不同,器件的复合效率与传统的异质结器件相比也得到了很大提高,这是因为将两种有机材料混合能消除界面势垒,提高器件的复合效率,从而提高了器件的发光性能,实现了微腔双模发射,且两个模式的半峰全宽分别为8nm和12nm。通过进一步优化器件结构可以实现微腔白光发射。  相似文献   

15.
A metal–oxide–semiconductor structure containing a single layer of size-controlled silicon nanocrystals embedded into gate oxide was fabricated. Size control for the silicon nanocrystals was realized by using a SiO2/SiO/SiO2 layer structure with the embedded SiO layer having the thickness of the desired Si nanocrystals and using a high-temperature annealing for forming the silicon nanocrystals. Current–voltage, capacitance–voltage, and conductance–voltage characteristics were measured for a sample containing 4-nm-sized crystals. From the Fowler–Nordheim plot an effective barrier height of 1.6 eV is estimated for our silicon nanocrystals. Electron trapping, storing, and de-trapping in silicon nanocrystals were observed by capacitance–voltage and conductance–voltage measurements. The charge density was measured to be 1.6×1012 /cm2, which is nearly identical to the silicon-nanocrystal density measured approximately via a transmission electron microscopy image. Conductance measurements reveal a very low interface charge of our structure. PACS 72.80.Sk; 73.63.Bd; 73.40.Qv  相似文献   

16.
We have fabricated MOS devices where the dielectric layer consists of a substoichiometric SiOx (x<2) thin film, annealed at 1100°C for 1 h to induce the separation of the Si and SiO2 phases, with the formation of silicon nanocrystals (nc) embedded in the insulating matrix. We have studied the electroluminescence (EL) properties of such devices as a function of the current density and of the temperature. We have evaluated the excitation cross section of Si nc under electrical pumping at room temperature and at low temperature (12 K). Moreover, we have used the experimental EL intensities and decay times to evaluate the radiative rate as a function of the temperature.  相似文献   

17.
《Current Applied Physics》2015,15(11):1472-1477
Electrical characteristic and luminance of three mixed-host organic light emitting diodes (OLEDs): namely the uniformly mixed, step-wise graded and mixed, and continuously graded and mixed, were compared with the conventional hetero-junction OLED in both numerical and experimental studies. These mixed-host OLEDs were fabricated by a mixed-source thermal evaporation process, and half-cell devices were also fabricated to provide some input parameters for OLED simulations. The current efficiencies were largely influenced by their device structures and strongly agreed with the computed current balance factors. The improved mixed-host OLED performances can be discussed with aid from simulations, which include spatial distributions of electron and hole, carrier mobility, electric field profiles, the total recombination rates in the light emitting layer.  相似文献   

18.
We present photoluminescence and electroluminescence of silicon nanocrystals deposited by plasma-enhanced chemical vapor deposition (PECVD) using nanocrystalline silicon/silicon dioxide (nc-Si/SiO2) superlattice approach. This approach allows us to tune the nanocrystal emission wavelength by varying the thickness of the Si layers. We fabricate light emitting devices (LEDs) with transparent indium tin oxide (ITO) contacts using these superlattice materials. The current-voltage characteristics of the LEDs are measured and compared to Frenkel-Poole and Fowler-Nordheim models for conduction. The EL properties of the superlattice material are studied, and tuning, similar to that of the PL spectra, is shown for the EL spectra. Finally, we observe the output power and calculate the quantum efficiency and power conversion efficiency for each of the devices.  相似文献   

19.
Atomic transport in thermal growth of thin and ultrathin silicon oxide, nitride, and oxynitride films on Si is reviewed. These films constitute the gate dielectrics, the “heart” of silicon metal-oxide-semiconductor field-effect transistor (MOSFET) and dynamic random-access memory (DRAM) devices, which are usually thermally grown on the active region of the semiconductor Si substrate. The drive of ultra-large scale integration towards the 0.18 μm channel length and below requires gate dielectrics with thicknesses of 3–4 nm and less, establishing new and very strict material requirements. Knowledge on an atomic scale of dielectric film growth promoted by thermally activated transport mechanisms is essential to the engineering of this fabrication step. In the case of thermal growth of silicon oxide films on Si in dry O2, the mobile species is O2 and growth is essentially a diffusion–reaction phenomenon. The thermal growth of silicon nitride and oxynitride films on Si in NH3, NO and N2O, on the other hand, involves catalytic dissociation of the original gas molecules at the surfaces and interfaces and diffusion–reaction of different resulting species, like NH2, NH, H, N, NO, O, and O2. Hydrogen transport and incorporation is a crucial, ubiquitous issue in thermally grown dielectric films on Si which is also addressed here. A recall is made of the physico-chemical constitution of the involved surfaces and interfaces for each different dielectric material, as well as complementary studies of the gas, gas-surface, and solid phase chemistry. An outline of the unique tools of isotopic substitution and high resolution depth profiling is included.  相似文献   

20.
White organic light-emitting devices (WOLEDs) with Mg:Ag/Alq3/Alq3:DCJTB/Alq3/DPVBi/α-NPD/ITO and Mg:Ag/Alq3/DPVBi:DCJTB/Alq3/DPVBi/α-NPD/ITO structures were fabricated with three primary-color emitters of red, green, and blue by using organic molecular-beam deposition. Electroluminescence spectra showed that the dominant white peak for the WOLEDs fabricated with host red-luminescence Alq3 and DPVBi layers did not change regardless of variations in the current. The Commission Inernationale de l'Eclairage (CIE) chromaticity coordinates for the two WOLEDs were stable, and the WOLEDs at 40 mA/cm2 with luminances of 690 and 710 cd/cm2 showed an optimum white CIE chromaticity of (0.33, 0.33). While the luminance yield of the WOLED fabricated with a host red-luminescent Alq3 emitting layer below 30 mA/cm3 was larger than that of the WOLED fabricated with a DPVBi layer, above 30 mA/cm2, the luminance yield of the WOLED fabricated with the DPVBi layer was higher than that of the WOLED with the Alq3 layer and became more stable with increasing current density. These results indicate that WOLEDs fabricated with a host red-luminescence DPVBi layer without any quenching behavior hold promise for potential applications in backlight sources in full-color displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号