首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the topographical effect of roughness displayed by a closely packed particle monolayer on formation of a cell monolayer (cell sheet). Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527nm (SA053) and 1270nm (SA127) in diameter. Human umbilical vein endothelial cells (HUVECs) were seeded at a high density (2.0 x10(5)cells/cm(2)) onto particle monolayers. It was found that cells gradually became into contact with adjacent cells on the SA053 monolayer and the formed cell sheet could be readily detached from the particle monolayer by gentle pipetting. On the other hand, cells adhering onto the tissue culture polystyrene (TCPS) and the SA127 particle monolayer were difficult to peel off. At a low cell seeding density (5.0x10(4)cells/cm(2)), pre-coating with bovine plasma fibronectin (FN) allowed cell growth on an SA053 particle monolayer, and a confluent monolayer was able to be peeled as a cell sheet from the particle monolayer just by pipetting. By immunostaining of human fibronectin, we found that fibronectin was secreted and concentrated onto the substrate side of a cell sheet. The obtained cell sheet adhered and grew on the TCPS again within 20min.  相似文献   

2.
The template function of cationic particle monolayers bearing quaternary ammonium groups on their surfaces towards anionic colloids was investigated in this paper. Monodispersed cationic polymer particles having quaternary ammonium groups were self-organized on octadecylated glass plates through hydrophobic interaction. The morphology of the resulting particle monolayers was changed by tuning hydrophilic–hydrophobic balance of particles to fabricate aggregated type and dispersed type of particle monolayers. Gold and silver colloids were selectively deposited onto the particle monolayers through electrostatic interaction. The deposited gold and silver colloids on particle monolayers showed plasmon absorbance. Fluorescent silica colloids were also selectively deposited on particle monolayers to permit fluorescence labeling of the particle monolayers. Cationic particle monolayers fabricated on hydrophobic solid octadecylated were found to effectively work as templates for the deposition of above mentioned inorganic colloids.  相似文献   

3.
The effects of different surface roughness models on a previously developed van der Waals adhesion model were examined. The van der Waals adhesion model represented surface roughness with a distribution of hemispherical asperities. It was found that the constraints used to define the asperity distribution on the surface, which were determined from AFM scans, varied with scan size and thus were not constant for all surfaces examined. The greatest variation in these parameters occurred with materials that had large asperities or with materials where a large fraction of the surface was covered by asperities. These rough surfaces were modeled with fractals and also with a fast Fourier transform algorithm. When the model surfaces generated using the Fourier transforms are used in the adhesion model, the model accurately predicts the experimentally observed adhesion forces measured with the AFM.  相似文献   

4.
许东华  孙昭艳 《高分子科学》2015,33(11):1550-1561
The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero.  相似文献   

5.
Control of cell adhesion is a key technology for cell-based drug screening and for analyses of cellular processes. We developed a method to spatiotemporally control cell adhesion using a photochemical reaction. We prepared a cell-culturing substrate by modifying the surface of a glass coverslip with a self-assembled monolayer of an alkylsiloxane having a photocleavable 2-nitrobenzyl group. Bovine serum albumin (BSA) was adsorbed onto the substrate to make the surface inert to cell adhesion. When exposed to UV light, the alkylsiloxane underwent a photocleavage reaction, leading to the release of BSA from the surface. Fibronectin, a protein promoting cell adhesion, was added to cover the irradiated regions and made them cell-adhesive. Seeding of cells on this substrate resulted in their selective adhesion to the illuminated regions. By controlling the sizes of the illuminated regions, we formed cell-adhesive spots smaller than single cells and located focal adhesions of the cells. Moreover, by subsequently illuminating the region alongside the cells patterned on the substrate in advance, we released their geometrical confinements and induced migration and proliferation. These manipulations were conducted under a conventional fluorescence microscope without any additional instruments. The present method of cell manipulation will be useful for cell biological studies as well as for the formation of cell arrays.  相似文献   

6.
Self-organization of cationic polymer particles through hydrophobic interaction on polymer films in aqueous system and characteristic properties of the resulting particle monolayers were investigated. Cationic polymer particles bearing quaternary ammonium groups on their surfaces effectively self-organized on polymer films. With an increase of the particle surface charge density, the surface coverage and average aggregate size (N a) decreased. The surface coverage control was accomplished by tuning the ionic strength of the media. The wettability of polymer films for water was imparted by the formation of particle monolayers on them. Annealing of the particle monolayers resulted in the increase of the adhesive strength, while the wettability for water was lost. Further improvements of both wettability and adhesive strength of particle monolayers were achieved by the immobilization of silica colloids on the particle monolayers. This method would be effective for the hydrophilization of polymer films.  相似文献   

7.
8.
A novel microdevice which had a micro- and nanometer-scale patterned surface for cell adhesion in a microchip was developed. The surface had a metal pattern fabricated by electron-beam lithography and metal sputtering and a chemical pattern consisting of a self-assembled monolayer of alkanethiol. The metal patterned surface had a gold stripe pattern which was as small as 300 nm wide and 150 nm high and both topography and chemical properties could be controlled. Mouse fibroblast NIH/3T3 cells were cultured on the patterned surface and elongated along the gold stripes. These cells recognized the size of the pattern and the chemical properties on the pattern though it was much smaller than they were. There was satisfactory cell growth under fresh medium flow in the microchip. The combination of the patterned surface and the microchip provides cells with a novel environment for their growth and will facilitate many cellular experiments. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Cyclic voltammetry and electrochemical impedance spec-troscopy were used to study the surface acid-base property of carboxylic acid-terminated self-assembled monolayers(SAMs).A carboxylic acid-terminated thiol,such as thioctic acid(1,2-dithiolane-3-pentanoic acid),was self-assembled on gold electrodes.Electron transfer between the bulk solution and the SAM modified electrode was studied at different pH using Fe(CN)63-as a probe.The surface pka of thioctic acid was determined by cyclic voltammetry and electrochemical impedance spectroscopy to be 5.6 ±0.1 and 5.8±0.1,respectively.The method is compared with other methods of monolayer pKa measurement.  相似文献   

10.
Micron-sized, monodisperse polymer particles having unique disc-like and polyhedral shapes were produced by seeded dispersion polymerization of various methacrylates with 1.57 m-sized polystyrene seed particles in the presence of saturated hydrocarbon droplets in methanol/water. Such nonspherical shapes were controllable by the polymerization conditions.Part CCLX of the series Studies on Suspension and Emulsion  相似文献   

11.
Microelectrode arrays are used to sort single fluorescently labeled cells and particles as they flow through a microfluidic channel using dielectrophoresis. Negative dielectrophoresis is used to create a “Dielectrophoretic virtual channel” that runs along the center of the microfluidic channel. By switching the polarity of the electrodes, the virtual channel can be dynamically reconfigured to direct particles along a different path. This is demonstrated by sorting particles into two microfluidic outlets, controlled by an automated system that interprets video data from a color camera and makes complex sorting decisions based on color, intensity, size, and shape. This enables the rejection of particle aggregates and other impurities, and the system is optimized to isolate high purity populations from a heterogeneous sample. Green beads are isolated from an excess of red beads with 100% purity at a rate of up to 0.9 particles per second, in addition application to the sorting of osteosarcoma and human bone marrow cells is evidenced. The extension of Dielectrophoretic Virtual Channels to an arbitrary number of sorting outputs is examined, with design, simulation, and experimental verification of two alternate geometries presented and compared.  相似文献   

12.
Spiroxazine are of considerable interest as photochromic materials because of their application. On the other hand, surface plasmon resonance (SPR) is a well-known optical method for measuring optical constants of thin film. In this study, photochromic materials were used as self-assembled monolayers (SAMs) of newly synthesized spiroxazine derivatives. We used Fresnel equation (four-layer model) to determine the precise dielectric constant () of the photochromic monolayers. Structure changes of spiroxazine derivatives under UV-light irradiation resulted in the change of optical constants, the dielectric constant and thickness. The obtained results indicated that the ring opening of photochromic spiroxazine can lead to the decrease in the dielectric constant and thickness.  相似文献   

13.
Surface dilational moduli of polymer monolayers, blended polymer monolayers, and polymer particle monolayers spread at air–water interfaces are reviewed, focusing on measurements using surface pressure isotherm, surface pressure relaxation, and oscillating barrier methods. Differences between the surface dilational moduli of condensed polymer monolayers and expanded polymer monolayers are explored. Moreover, the features of the surface dilational moduli in blended polymer monolayers are discussed in terms of their miscibility.  相似文献   

14.
Antimicrobial agents have a major practical importance in food, pharmaceutical and cosmetic applications for preventing contamination. Our group has developed a novel class of cationic diacyl glycerol arginine-based surfactants denoted 1414RAc and 1212RAc. To assess the antimicrobial properties of these new surfactants we have studied how they interact with 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) and 1,2-dimiristoyl-sn-glycero-3-phosphocoline (DMPC) as model membranes, as well with living organisms endowed or not with external barriers, such as gram negative bacteria, the human protozoa Leishmania and mammalian cell line.

The structure and phase characteristics of mixed monolayers have been assessed through the analysis of static elasticity. The extent of component miscibility of surfactant and phospholipid in mixed monolayers has been studied using the additivity rule and the excess free energy of a mixture as a function of the phospholipid molar fraction for different surface pressure values. In all the mixtures studied, the mixed monolayer is thermodynamically favoured except for the 1212RAc/DMPC case that exhibits positive values of excess free energy.

The interaction with living cells has cytotoxic effects only in eukaryotic cells, by unspecific membrane permeabilization.  相似文献   


15.
Review of cell and particle trapping in microfluidic systems   总被引:2,自引:0,他引:2  
The ability to obtain ideal conditions for well-defined chemical microenvironments and controlled temporal chemical and/or thermal variations holds promise of high-resolution cell response studies, cell-cell interactions or e.g. proliferation conditions for stem cells. It is a major motivation for the rapid increase of lab-on-a-chip based cell biology research. In view of this, new chip-integrated technologies are at an increasing rate being presented to the research community as potential tools to offer spatial control and manipulation of cells in microfluidic systems. This is becoming a key area of interest in the emerging lab-on-a-chip based cell biology research field. This review focuses on the different technical approaches presented to enable trapping of particles and cells in microfluidic system.  相似文献   

16.
Self‐assembled monolayers (SAMs) of helix peptides oriented vertically to a gold surface were prepared. Negative surface potentials of a few hundred millivolts were observed for the helix peptide SAMs when they were immobilized on gold through the N terminal of the peptides. However, positive surface potentials were generated in the helix peptide SAMs when the N terminal of the peptides was directed the opposite way. The large dipole moment of the helical peptide was thought to be the major factor for generation of the surface potential. The effect of the dipole moment on the electron transfer through the helix peptide SAMs was investigated. Photocurrent generation by photoexcitation of the N‐ethylcarbazolyl group of the peptide SAMs was accelerated by the dipole moment directed toward the gold substrate. Helical peptides were thus shown to be a suitable medium for electron transfer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4826–4831, 2000  相似文献   

17.
ABSTRACT

Electrochemical biosensors are a well-known group of tools used widely in a variety of industries. Due to interactions between analytes and a surface, a measurable signal occurs which can then be processed to quantitative and/or qualitative data. The knowledge of surfaces’ electrochemical properties as well as their pKa is of great importance when it comes to the construction of biosensors based on an electrochemical signal. In our work, we focused on determining electrochemical properties as well as pKa of thiol-based SAMs – commonly used linker layers in biosensors. By applying cyclic voltammetry and electrochemical spectroscopy we were able to describe the overall resistive behaviour of SAMs synthesised with both alkanethiols and thiols with carboxyl and amine groups. Coherent use of contact angle measurements let us also describe the overall polarity of the investigated surfaces. The obtained data of pKa values differed from the ones described for bulk solutions of modifying agents, which yields important information for further modification of the surface.  相似文献   

18.
The main aim was to study the roles of structural homogeneity and superhydrophobicity on the adhesion of SW colon cancer cells on the surface of polyvinyl chloride (PVC) nanocomposites. Concurrent use of a proper nonsolvent (ethanol) and silica nanoparticles resulted in superhydrophobic behavior and also different surface structures. The effect of added‐ethanol content on the surface properties of PVC nanocomposites was also studied. The synergetic combination of silica and ethanol has led to the formation of a porous surface layer resulting in a considerable boost in the hydrophobic behavior. The scanning electron microscopy, roughness, and X‐ray photoelectron spectroscopy (XPS) analysis results were all in total agreement indicating the substantial change in surface morphology, topography, and composition once the ethanol content was increased to 50 vol.%. The surface structure was notably changed by the addition of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles. It was found that the induced inhomogeneity as a result of POSS addition had an adverse effect on the surface properties. In conclusion, superhydrophobicity could be regarded as a prerequisite for achieving cell‐repellent behavior, but it cannot guarantee a cell repellent surface especially if the surface layer possesses structural inhomogeneity.  相似文献   

19.
Two strains (an environmental strain and a reference one coming from a national culture collection) of Yersinia ruckeri, a fish pathogenic bacterium, are characterised according to the ability to adhere on wood, concrete, polyvinylchloride (PVC) and fibreglass, four materials commonly found in fish farms. The relationships between adherence, bacterial and support hydrophobicities and surface roughness are investigated. The results show that: (i) Y. ruckeri is strongly hydrophilic; (ii) the environmental strain exhibits a higher ability to adhere than the reference one; and (iii) for the two strains a strong correlation is observed between roughness amplitude (RA) of the support material and adhesion ability.  相似文献   

20.
Deposition of layer-by-layer polyelectrolyte multilayer (PEM) films has been a widely applied surface modification technique to improve the biocompatibility of biomaterials. The objective of this study was to investigate the impact of the deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) multilayer films on adhesion, growth and differentiation of osteoblasts-like MG63 cells. PAH and PAA were deposited sequentially onto tissue culture polystyrene at either pH 2.0 or pH 6.5 with 4-21 layers. While the MG63 cells attached poorly on the PAH/PAA multilayer films deposited at pH 2.0, while the cells adhered to the PEM films deposited at pH 6.5, depending on layer numbers. Cell adhesion, proliferation and osteogenic activities (alkaline phosphatase activity, expression of osteogenic marker genes and mineralization) were highest on the 4-layer PAH/PAA film and decreased with increasing layer numbers. On the other hand, the behavior of MG63 cells did not show any difference on the adjacent even and odd layers, except PEM4 and PEM5, i.e. the surface charges of the PAH/PAA multilayer films with over ten layers seem indifferent to osteoblastic functions. The results in this study suggested that the mechanical properties of PEM films may play a critical role in modulating the behavior of osteoblasts, providing guidance for application of PEM films to osteopaedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号